589 resultados para stretch


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ContentsReaching new heightsCareer fair creates connectionsProfessor named to energy committeeVictory could stretch winning streak to threeShare love with Valentine's treatsIs Christianity really so different?Create homemade crafts to celebrate the holiday

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND: CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS: In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS: ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strain of Saccaromyces cerevisiae (SC3B) with a temperature sensitive defect in the synthesis of DNA has been isolated. This defect is due to a single recessive mutation in a gene named INS1 required for the initiation of S phase. Arrested cells carrying the ins1$\sp{ts}$ allele are defective in the completion of G1 to S phase transition events including SPB duplication or separation, initiation of DNA synthesis, normal control of budding, and bud neck stability. The mutation and a gene which complements the mutation were mapped to chromosome IV. The complementing gene was proved to be the wild type allele of the temperature sensitive mutation by genetic linkage of an integrated clone. A very low abundance 4.2 kb RNA message was observed in the strain SC3B which increased greatly in this strain transformed with a multiple copy plasmid carrying the complementing clone. The wild type gene was sequenced and found to encode a 1268 amino acid protein of with a molecular weight of 142,655 Daltons. Computer assisted searches for similar DNA sequences revealed no significant homology matches. However, searches for protein sequence homology revealed a protein (the DIS3 gene product of S. pombe) with a similar sequence over a 534 amino acid stretch to the predicted INS1 gene product. A later search revealed a near identical sequence for a gene (SRK1) also isolated from S. cerevisiae. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Spec genes of the sea urchin Stronylocentrotus purpuratus serves as an excellent model for studying cell type-specific gene expression during early embryogenesis. The Spec1/Spec2 genes encode cytosolic calcium-binding proteins related to the calmodulin/troponin C/myosin light chain superfamily. Members of the Spec gene family are activated shortly after the sixth cleavage as the lineage-specific founder cells giving rise to aboral ectoderm are established, and the accumulation of the Spec mRNAs is limited exclusively to aboral ectoderm cell lineages. In this dissertation, the transcriptional regulation of the Spec genes was studied. Sequence comparisons of the Spec gene 5$\sp\prime$ flanking regions showed that a DNA block of approximately 800 bp from the 3$\sp\prime$ end of the first exon to the 5$\sp\prime$ end of a repetitive DNA element, termed RSR, was highly conserved. In Spec2a, the conserved region was a continuous stretch of DNA, but in Spec1 and Spec2c, DNA insertions interrupt the conserved sequence block and alter the relative placement of the RSR element and other 5$\sp\prime$ flanking DNA. Thus, drastic rearrangements have occurred within the putative control regions of the Spec genes. In vivo expression experiments using the sea urchin embryo gene-transfer system showed that while the 5$\sp\prime$ flanking regions of all three Spec genes conferred proper temporal activation to the reporter CAT gene, only the Spec2a 5$\sp\prime$ flanking region could restrict lacZ gene expression to aboral ectoderm cells. However, the Spec2a conserved region alone was not sufficient to confer proper spatial expression, suggesting that negative spatial elements are also associated with the proper activation of Spec2a. A major positive regulatory region, defined as the RSR enhancer, was identified between base pairs $-$631 and $-$443 on Spec2a. The RSR enhancer was essential for maximal activity and conferred preferential aboral ectoderm expression to a lacZ reporter gene. DNaseI footprinting and band-shift analysis of the RSR enhancer revealed multiple DNA-elements. One of the elements, an A/T-rich sequence called the A/T palindrome was studied in detail. This element binds a single 45-kDa nuclear protein, the A/T palindrome binding protein (A/TBP), whose DNA-binding specificity suggests a possible relationship with the bicoid-class homeodomain proteins. Mutated A/T palindromes are incapable of binding the 45-kDa protein and lower promoter activity by 8-fold. DNA-binding activity for A/TBP is low in unfertilized eggs, increases by the 16-cell stage and continues rising in blastulae. These data suggest that A/TBP plays a major role in the activation of the Spec2a gene in aboral ectoderm cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contents of this dissertation include studies on the mechanisms by which FGF and growth factor down-stream kinases inactivate myogenin; characterization of myogenin phosphorylation and its role in regulation of myogenin activity; analysis the C-terminal transcriptional activation domain of myogenin; studies on the nuclear localization of myogenin and characterization of proteins that interact with PKC.^ Activation of muscle transcription by the MyoD family requires their heterodimerization with ubiquitous bHLH proteins such as the E2A gene products E12 and E47. I have shown that dimerization with E2A products potentiates phosphorylation of myogenin at serine 43 in its amino-terminus and serine 170 in the carboxyl-terminal transcription activation domains. Mutations of these sites resulted in enhanced transcriptional activity of myogenin, suggesting that their phosphorylation diminishes myogenin's transcriptional activity. Consistent with the role of phosphorylation at serine 170, analysis of the carboxyl-terminal transcriptional activation domain by deletion has revealed a stretch of residues from 157 to 170 which functions as a negative element for myogenin activity.^ In addition to inducing phosphorylation of myogenin, E12 also localizes myogenin to the nucleus. The DNA binding and dimerization mutants of myogenin show various deficiencies in nuclear localization. Cotransfection of E12 with the DNA binding mutants, but not a dimerization mutant, greatly enhances their nuclear binding. These data suggest that the nuclear localization signal is located in the DNA binding region and myogenin can also be nuclear localized by virtue of dimerizing with a nuclear protein.^ FGF is one of the most potent inhibitors of myogenesis and activates many down-stream pathways to exert its functions. One of these pathway is the MAP kinase pathway. Studies have shown that Raf-1 and Erk-1 kinase inactivate transactivation by myogenin and E proteins independent of DNA binding. The other is the PKC pathway. In transfected cells, FGF induces phosphorylation of thr-87 that maps to the previously identified PKC sites in the DNA binding domain of myogenin. Myogenin mutant T-N87 could resist the inhibition directed to the bHLH domain by FGF, suggesting that FGF inactivates myogenin by inducing phosphorylation of this site. In C2 myotubes, where FGF receptors are lost, the phosphatase inhibitor, okadaic acid, and phorbal ester PdBu, can also induce the phosphorylation of thr-87. This result supports the previous observation and suggests that in myotubes, other mechanisms, such as innervation, may inactivate myogenin through PKC induced phosphorylation.^ Many functions of PKC have been well documented, yet, little is known about the activators or effectors of PKC or proteins that mediate PKC nuclear localizations. Identification of PKC binding proteins will help to understand the molecular mechanism of PKC function. Two proteins that interact with the C kinase (PICKS) have been characterized, PICK-1 and PICK-2. PICK1 interacts with two conserved regions in the catalytic domain of PKC. It is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK2 is a novel protein with homology to the heat shock protein family. It interacts extensively with the catalytic domain of PKC and is localized in the cytoplasm in a punctate pattern. PICK1 and PICK2 may play important roles in mediating the actions of PKC. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report about a lung-on-chip array that mimics the pulmonary parenchymal environment, including the thin, alveolar barrier and the three-dimensional cyclic strain induced by the breathing movements. A micro-diaphragm used to stretch the alveolar barrier is inspired by the in-vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in-vivo conditions found in the lung parenchyma, but also at making its handling easy and robust. An innovative concept, based on the reversible bonding of the device, is presented that enables to accurately control the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that formed tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we could also demonstrate that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by the breathing in pulmonary research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NH···π hydrogen bonds occur frequently between the amino acid side groups in proteins and peptides. Data-mining studies of protein crystals find that ~80% of the T-shaped histidine···aromatic contacts are CH···π, and only ~20% are NH···π interactions. We investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet-cooled imidazole·benzene (Im·Bz) complex as a model for the NH···π interaction between histidine and phenylalanine. Ground- and excited-state dispersion-corrected density functional calculations and correlated methods (SCS-MP2 and SCS-CC2) predict that Im·Bz has a Cs-symmetric T-shaped minimum-energy structure with an NH···π hydrogen bond to the Bz ring; the NH bond is tilted 12° away from the Bz C₆ axis. IR depletion spectra support the T-shaped geometry: The NH stretch vibrational fundamental is red shifted by −73 cm⁻¹ relative to that of bare imidazole at 3518 cm⁻¹, indicating a moderately strong NH···π interaction. While the Sₒ(A1g) → S₁(B₂u) origin of benzene at 38 086 cm⁻¹ is forbidden in the gas phase, Im·Bz exhibits a moderately intense Sₒ → S₁ origin, which appears via the D₆h → Cs symmetry lowering of Bz by its interaction with imidazole. The NH···π ground-state hydrogen bond is strong, De=22.7 kJ/mol (1899 cm⁻¹). The combination of gas-phase UV and IR spectra confirms the theoretical predictions that the optimum Im·Bz geometry is T shaped and NH···π hydrogen bonded. We find no experimental evidence for a CH···π hydrogen-bonded ground-state isomer of Im·Bz. The optimum NH···π geometry of the Im·Bz complex is very different from the majority of the histidine·aromatic contact geometries found in protein database analyses, implying that the CH···π contacts observed in these searches do not arise from favorable binding interactions but merely from protein side-chain folding and crystal-packing constraints. The UV and IR spectra of the imidazole·(benzene)₂ cluster are observed via fragmentation into the Im·Bz+ mass channel. The spectra of Im·Bz and Im·Bz₂ are cleanly separable by IR hole burning. The UV spectrum of Im·Bz₂ exhibits two 000 bands corresponding to the Sₒ → S₁ excitations of the two inequivalent benzenes, which are symmetrically shifted by −86/+88 cm⁻¹ relative to the 000 band of benzene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detrusor underactivity (DU) increases susceptibility to urinary retention and accordingly further complicates the management of urinary incontinence. Bladder muscle stretch, a lack of estrogen, and aging are 3 notable DU risk factors. The aim of this research is to better characterize the changes in cellular composition of the bladder that result from these 3 risk factors to gain a better understanding of DU pathogenesis and pathobiology. This research focuses on the effects of a lack of estrogen while also providing an outline for determining the effects of bladder muscle stretch and aging on the cellular composition of the bladder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are autosomal dominantly inherited in 19% of patients. Mapping studies determined that the disease is genetically heterogeneous with multiple loci and genetic mutations accounting for familial TAAD. However, regardless of the specific mutation, resulting pathology is consistently medial degeneration, characterized by increased proteoglycans and loss of elastic fibers. We tested the hypothesis that genetic mutations leading to familial TAAD alter common pathways in aortic smooth muscle cells (SMCs). Identification of mutations at R460 in TGFBR2 reveals a 5% contribution to TAAD, however downstream analysis of Smad2 phosphorylation in the TGF-β pathway is not commonly altered in familial or sporadic disease when compared to controls. Expression profiling using Illumina's Sentrix HumanRef 8 Expression Beadchip array was done on RNA isolated from SMCs explanted from 6 patients with inherited TAAD with no identified mutation and 3 healthy controls obtained from the International Institute for the Advancement of Medicine. Significant increases in expression of proteoglycan genes in patients' SMCs, specifically lumican, podocan, and decorin were confirmed using Q-PCR and tissue immunofluorescence. NCI's Ingenuity Pathway Analysis predicted alterations in the ERK, insulin receptor and SAPK/JNK pathways (p<0.001), which SMCs activate in response to cyclic stretch. Immunoblotting indicated increased phosphorylation of ERK and GSK-3β, a protein from the insulin receptor pathway, in explanted patient SMCs, also confirmed by increased immunoreactivity against phosphorylated ERK and GSK-3β in the sub-intimal SMCs from patient tissue compared to controls. To determine if mechanotransduction pathway activation was responsible for the medial degeneration a specific inhibitor of GSK-3β, SB216763 was incubated with control cells and significantly increased the expression levels of proteoglycans. Mechanical strain was also applied to control SMCs confirming pathways stimulation with stretch. Incubation with pathway inhibitors against insulin receptor and ERK pathways identify, for the first time that stretch induced GSK-3β phosphorylation may increase proteoglycan expression, and ERK phosphorylation may regulate the expression of MMP2, a protein known to degrade elastic fibers. Furthermore, specific mutations in SMC-specific β-myosin heavy chain and α-actin, in addition to upregulation of pathways activated by cyclic stretch suggest that SMC response to hemodynamic factors, play a role in this disease. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^