901 resultados para stream macroinvertebrates
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Macroalgal seasonality was studied monthly in a second-order stream in the north-west of São Paulo State, S.E. Brazil. Seasonal variation was based on frequency and percentage cover. Seven species were found during the study period, three of which ('Chantransia' stage of Sirodotia delicatula, Homoeothrix juliana and Klebsormidium subtile) were encountered throughout the year and showed well-defined seasonal patterns as well as the highest value of frequency and percentage cover. 'Chantransia' and H. juliana dominated in summer and fall, while for K. subtile winter was the most favourable period. The remaining species (Oscillatoria agardhii, Microcoleus subtorulosus, Oedogonium sp. and Chaetophora elegans) had no clear seasonal pattern, in addition to their low values of frequency and percentage cover. Individually, K. subtile correlated with higher number of physical and chemical variables (oxygen, pH, precipitation, temperature, daylength, conductance and turbidity) than 'Chantransia' and H. juliana (discharge and depth). Principal component analyses revealed that no single variable was responsible for the macroalgal seasonal dynamics. The variables most closely related to seasonal variation of the macroalgal community were daylength, precipitation, discharge, turbidity and dissolved oxygen. Precipitation and flow were suggested as key factors in determining seasonality of the macroalgae. © 1991 Kluwer Academic Publishers.
Resumo:
Forty-four stream segments were sampled from May to October in 1992 and 1993 in the northwest region of São Paulo State, southeastern Brazil (19 degrees 45'-21 degrees 25'S, 49 degrees 05'-51 degrees 30'S). Thirty-six macroalgal subgeneric taxa were found and Chlorophyta was the dominant algal group (47% species), followed by Cyanophyta (33.5%), Rhodophyta (14%) and Chrysophyta (5.5%). The most widespread species were Stigeoclonium helveticum (25% sites), Batrachospermum delicatulum and Compsopogon coeruleus (20.5%). Distribution was patchy, with species number per sampling site ranging from 0 to six (3.1 +/- 1.7) and correlated positively with species abundance. Species cover ranged from 0 to 61% of the stream bottom (19.1 +/- 19.7%). Most sites (57%) were dominated by one or two macroalgae species. No significant difference was found between the frequency distribution of variables measured for streams and for total macroalgae, but the most widespread species differed for most parameters and occurred over wider ranges of environmental conditions. Mean species number and abundance were close to values found in distinct regions or biomes of North America. Higher conductance and lower oxygen values, as well as rocky substrata, generally constituted the most favourable combination of conditions for the development of macroalgae in the region. The pattern of strong dominance of few species was considered to be typical for stream macroalgal communities in general.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In 2001, the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program began an intensive study of nutrient enrichment—elevated concentrations of nitrogen and phosphorus— in streams in five agricultural basins across the Nation (see map, p. 2). This study is providing nationally consistent and comparable data and analyses of nutrient conditions, including how these conditions vary as a result of natural and human-related factors, and how nutrient conditions affect algae and other biological communities. This information will benefit stakeholders, including the U.S. Environmental Protection Agency (USEPA) and its partners, who are developing nutrient criteria to protect the aquatic health of streams in different geographic regions.
Resumo:
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.
Resumo:
The contribution of wastewater from a tannery industry to the pollution of a stream was investigated. The main parameters studied were biochemical oxygen demand, chemical oxygen demand, chromium, dissolved oxygen, fecal and total conforms, nitrogen, oils and greases, pH, phosphorous, sulfides, suspended solids, turbidity, and volatile solids. Three sampling points were located: (I) at the discharge point of tannery wastewater, (2) 50 m upstream, and (3) 80 m downstream of discharge point. Also was investigated the pollution at the stream source.