995 resultados para species inventory
Resumo:
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Resumo:
Corynetes compactus Westwood is recognised as a junior synonym (syn. n.) of Pylus anthicides Newman, which is transferred from the South African genus Thriocera Gorham to the endemic Australian genus Thriocerodes Wolcott & Dybas, resulting in the combination Thriocerodes anthicides (Newman), comb. n.
Resumo:
Aim: Effective decisions for managing invasive species depend on feedback about the progress of eradication efforts. Panetta & Lawes. developed the eradograph, an intuitive graphical tool that summarizes the temporal trajectories of delimitation and extirpation to support decision-making. We correct and extend the tool, which was affected by incompatibilities in the units used to measure these features that made the axes impossible to interpret biologically. Location: Victoria, New South Wales and Queensland, Australia. Methods: Panetta and Lawes' approach represented delimitation with estimates of the changes in the area known to be infested and extirpation with changes in the mean time since the last detection. We retain the original structure but propose different metrics that improve biological interpretability. We illustrate the methods with a hypothetical example and real examples of invasion and treatment of branched broomrape (Orobanche ramosa L.) and the guava rust complex (Puccinia psidii (Winter 1884)) in Australia. Results: These examples illustrate the potential of the tool to guide decisions about the effectiveness of search and control activities. Main conclusions: The eradograph is a graphical data summary tool that provides insight into the progress of eradication. Our correction and extension of the tool make it easier to interpret and provide managers with better decision support. © 2013 John Wiley & Sons Ltd.
Resumo:
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. TAXONOMIC NOVELTIES: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.
Resumo:
New distribution records for 42 species of fruit flies (Diptera: Tephritidae: Dacinae) in Queensland are presented, resulting from exotic fruit fly monitoring from 1996 to 2011. Summaries of previously known Australian distributions are provided. Fruit flies were collected at cue lure and methyl eugenol traps and reared from host fruit. No new distributions south of Townsville were recorded for the economic species Bactrocera frauenfeldi (Schiner, 1868), Bactrocera kraussi (Hardy, 1951) and Bactrocera musae (Tryon, 1927). Minor range extensions are noted for Bactrocera neohumeralis (Hardy, 1951) and Bactrocera tryoni (Froggatt, 1897). Bactrocera jarvisi (Tryon, 1927) is recorded being weakly attracted to cue lure in Queensland and the first lure record (one specimen from cue lure) is provided for Dacus (Mellesis) petioliforma (May, 1956). Taxonomic issues with Bactrocera melanothoracica Drew (1989) and Bactrocera unirufa Drew (1989) are discussed. Dacus (Neodacus) coenensis sp. n. is described and illustrated from Cape York Peninsula.
Resumo:
Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.
Resumo:
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host. © 2012.
Resumo:
Mixed species plantations using native trees are increasingly being considered for sustainable timber production. Successful application of mixed species forestry systems requires knowledge of the potential spatial interaction between species in order to minimise the chance of dominance and suppression and to maximise wood production. Here, we examined species performances across 52 experimental plots of tree mixtures established on cleared rainforest land to analyse relationships between the growth of component species and climate and soil conditions. We derived site index (SI) equations for ten priority species to evaluate performance and site preferences. Variation in SI of focus species demonstrated that there are strong species-specific responses to climate and soil variables. The best predictor of tree growth for rainforest species Elaeocarpus grandis and Flindersia brayleyana was soil type, as trees grew significantly better on well-draining than on poorly drained soil profiles. Both E. grandis and Eucalyptus pellita showed strong growth response to variation in mean rain days per month. Our study generates understanding of the relative performance of species in mixed species plantations in the Wet Tropics of Australia and improves our ability to predict species growth compatibilities at potential planting sites within the region. Given appropriate species selections and plantation design, mixed plantations of high-value native timber species are capable of sustaining relatively high productivity at a range of sites up to age 10 years, and may offer a feasible approach for large-scale reforestation.
Resumo:
The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) has recently decided to modify the current definition of virus species (Code of Virus Classification and Nomenclature Rule 3.21) and will soon ask the full ICTV membership (189 voting members) to ratify the proposed controversial change. In this discussion paper, 14 senior virologists, including six Life members of the ICTV, compare the present and proposed new definition and recommend that the existing definition of virus species should be retained. Since the pros and cons of the proposal posted on the ICTV website are not widely consulted, the arguments are summarized here in order to reach a wider audience.
Corymbia species and hybrids: chemical and physical foliar attributes and implications for herbivory
Resumo:
Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of affected sectors and the relative rarity of high-impact species.