857 resultados para species and community
Resumo:
Only about half of all the CO_2 that has been produced by the burning of fossil fuels now remains in the atmosphere. The CO_2 "missing" from the atmosphere is the subject of an important debate. It was thought that the great majority of the missing CO_2 has invaded the ocean, for this system naturally acts as a giant chemical regulator of the atmosphere. Although it is clear that ocean processes have a major role in the regulation of the carbon dioxide content of the atmosphere through air-sea exchange processes, recent studies of the oceanic carbon cycle and air-sea interaction indicate that oceanic carbon is in a quasi-steady state via the system of biological and physical processes in the ocean interior. It is difficult to determine whether the ocean has the capacity to take up the increasing air-born CO_2 released by human activities over the past five or six decades. To understand this enigma, we need a better understanding of the natural variability of the oceanic carbon cycle.
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
Despite the fact that plankton plays an important role in biogeochemical processes in oceans, data on its elemental composition, particularly in shelf seas of the Arctic Ocean, have thus far been insufficient. This communication, which is devoted to a comparative analysis of the elemental composition of plankton and bottom sediments in the White Sea, is part of the comprehensive investigation of the region that is occurring in line with the International Project ''Land-Ocean Interaction in the Russian Arctic'' (LOIRA).
Resumo:
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3 to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3 concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m**-2 h**-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m**-2 h**-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3 at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3 and pCO2. Threshold pCO2 and CO3 values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3 threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3 indicate that CO3 and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Resumo:
Although copepods have been considered tolerant against the direct influence of the ocean acidification (OA) projected for the end of the century, some recent studies have challenged this view. Here, we have examined the direct impact of short-term exposure to a pCO2/pH level relevant for the year 2100 (pHNBS, control: 8.18, low pH: 7.78), on the physiological performance of two representative marine copepods: the calanoid Acartia grani and the cyclopoid Oithona davisae. Adults of both species, from laboratory cultures, were preconditioned for four consecutive days in algal suspensions (Akashiwo sanguinea) prepared with filtered sea water pre-adjusted to the targeted pH values via CO2 bubbling. We measured the feeding and respiratory activity and reproductive output of those pre-conditioned females. The largely unaffected fatty acid composition of the prey offered between OA treatments and controls supports the absence in the study of indirect OA effects (i.e. changes of food nutritional quality). Our results show no direct effect of acidification on the vital rates examined in either copepod species. Our findings are compared with results from previous short- and long-term manipulative experiments on other copepod species.