936 resultados para signals analysis
Resumo:
This paper shows the results of an experimental analysis on the bell tower of “Chiesa della Maddalena” (Mola di Bari, Italy), to better understand the structural behavior of slender masonry structures. The research aims to calibrate a numerical model by means of the Operational Modal Analysis (OMA) method. In this way realistic conclusions about the dynamic behavior of the structure are obtained. The choice of using an OMA derives from the necessity to know the modal parameters of a structure with a non-destructive testing, especially in case of cultural-historical value structures. Therefore by means of an easy and accurate process, it is possible to acquire in-situ environmental vibrations. The data collected are very important to estimate the mode shapes, the natural frequencies and the damping ratios of the structure. To analyze the data obtained from the monitoring, the Peak Picking method has been applied to the Fast Fourier Transforms (FFT) of the signals in order to identify the values of the effective natural frequencies and damping factors of the structure. The main frequencies and the damping ratios have been determined from measurements at some relevant locations. The responses have been then extrapolated and extended to the entire tower through a 3-D Finite Element Model. In this way, knowing the modes of vibration, it has been possible to understand the overall dynamic behavior of the structure.
Resumo:
This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.
Resumo:
A microwave-based thermal nebulizer (MWTN) has been employed for the first time as on-line preconcentration device in inductively coupled plasma atomic emission spectrometry (ICP-AES). By the appropriate selection of the experimental conditions, the MWTN could be either operated as a conventional thermal nebulizer or as on-line analyte preconcentration and nebulization device. Thus, when operating at microwave power values above 100 W and highly concentrated alcohol solutions, the amount of energy per solvent mass liquid unit (EMR) is high enough to completely evaporate the solvent inside the system and, as a consequence, the analyte is deposited (and then preconcentrated) on the inner walls of the MWTN capillary. When reducing the EMR to the appropriate value (e.g., by reducing the microwave power at a constant sample uptake rate) the retained analyte is swept along by the liquid-gas stream and an analyte-enriched aerosol is generated and next introduced into the plasma cell. Emission signals obtained with the MWTN operating in preconcentration-nebulization mode improved when increasing preconcentration time and sample uptake rate as well as when decreasing the nozzle inner diameter. When running with pure ethanol solution at its optimum experimental conditions, the MWTN in preconcentration-nebulization mode afforded limits of detection up to one order of magnitude lowers than those obtained operating the MWTN exclusively as a nebulizer. To validate the method, the multi-element analysis (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) of different commercial spirit samples in ICP-AES has been performed. Analyte recoveries for all the elements studied ranged between 93% and 107% and the dynamic linear range covered up to 4 orders of magnitude (i.e. from 0.1 to 1000 μg L−1). In these analysis, both MWTN operating modes afforded similar results. Nevertheless, the preconcentration-nebulization mode permits to determine a higher number of analytes due to its higher detection capabilities.
Resumo:
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time–period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.
Resumo:
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.
Resumo:
Master thesis discusses the analysis of changes in biological signals on time based on dynamic time warping algorithm (DTW). Special attention is paid to problems of tiny changes analysis incomplex nonstationary biological signals. Electrocardiographic (ECG) signals are used as an example inthis study; in particular, repolarization segments of heart beat cycles. The aim of the research is studyingthe possibility of applying DTW algorithm for the analysis of small changes in the repolarization segments of heart beat cycles. The research has the following tasks:- Studying repolarization segments of heart beat cycles, andmethods of their analysis;- Studying DTW algorithm and its modifications, finding the most appropriate modification for analyzing changes in biological signals;- Development of methods for analyzing the warping path(output parameter of DTW algorithm).
Resumo:
The master thesis presents methods for intellectual analysis and visualization 3D EKG in order to increase the efficiency of ECG analysis by extracting additional data. Visualization is presented as part of the signal analysis tasks considered imaging techniques and their mathematical description. Have been developed algorithms for calculating and visualizing the signal attributes are described using mathematical methods and tools for mining signal. The model of patterns searching for comparison purposes of accuracy of methods was constructed, problems of a clustering and classification of data are solved, the program of visualization of data is also developed. This approach gives the largest accuracy in a task of the intellectual analysis that is confirmed in this work. Considered visualization and analysis techniques are also applicable to the multi-dimensional signals of a different kind.
Resumo:
Research analysis of electrocardiograms (ECG) today is carried out mostly using time depending signals of different leads shown in the graphs. Definition of ECG parameters is performed by qualified personnel, and requiring particular skills. To support decoding the cardiac depolarization phase of ECG there are methods to analyze space-time convolution charts in three dimensions where the heartbeat is described by the trajectory of its electrical vector. Based on this, it can be assumed that all available options of the classical ECG analysis of this time segment can be obtained using this technique. Investigated ECG visualization techniques in three dimensions combined with quantitative methods giving additional features of cardiac depolarization and allow a better exploitation of the information content of the given ECG signals.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.