837 resultados para semi binary based feature detectordescriptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work deals with investigations on some technologically important polymer nanocomposite films and semi crystalline polypyrrole films.The work presented in the thesis deals with the realization of novel polymer nanocomposites with enhanced functionalities and prospects of applications in the fields related to nanophotonics. The development of inorganic/polymer nanocomposites is a rapidly expanding multidisciplinary research area with profound industrial applications. The incorporation of suitable inorganic nanoparticles can endow the resulting nanocomposites with excellent electrical, optical and mechanical properties. The first chapter gives a general introduction to nanotechnology, nanocomposites and conducting polymers. It also emphasizes the significance of ZnO among other semiconductor materials, which forms the inorganic filler in the polymer nanocomposites of the present study. This chapter also gives general ideas on the properties and applications of conducting polymers with special reference to polypyrrole. The objectives of the present investigations are also clearly addressed in this chapter. The second chapter deals with the theoretical aspects and details of all the experimental techniques used in the present work for the synthesis of polymer nanocomposites and polypyrrole samples and their various characterizations. Chapter 3 is based on the preparation and properties of ZnO/Polystyrene nanocomposite film samples. The optical properties of these nanocomoposite films are discussed in detail.Chapter 4 deals with the detailed investigations on the dependence of the optical properties of ZnO/PS nanocomposite films on the size of the nanostructured ZnO filler material. The excellent UV shielding properties of these nanocomposite films form the highlight of this chapter. Chapter 5 gives a detailed analysis of the nonlinear optical properties of ZnO/PS nanocomposite films using Z scan technique. The effect of ZnO particle size in the composite films on the nonlinear properties is discussed. The present study involves two phases of research activities. In the first phase, the linear and nonlinear optical properties of ZnO/polymer nanocomposites are investigated in detail. The second phase of work is centered on the synthesis and related studies on highly crystalline polypyrrole films. In the present study, nanosized ZnO is synthesized using wet chemical method at two different temperatures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiosemicarbazones have emerged as an important class of ligands over a period of time, for a variety of reasons, such as variable donor properties, structural diversity and biological applications. Interesting as the coordination chemistry may be, the driving force for the study of these ligands has undoubtedly been their biological properties and the majority of the 3000 or so publications on thiosemicarbazones since 2000 have alluded to this feature. Thiosemicarbazones with potential donor atoms in their structural skeleton fascinate coordination chemists with their versatile chelating behavior. The thiosemicarbazones of aromatic aldehydes and ketones form stable chelates with transition metal cations by utilizing both their sulfur and azomethine nitrogen as donor atoms. They have been shown to possess a diverse range of biological activities including anticancer, antitumor, antibacterial, antiviral, antimalarial and antifungal properties owing to their ability to diffuse through the semipermeable membrane of the cell lines. The enhanced effect may be attributed to the increased lipophilicity of the metal complexes compared to the ligand alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrieval of similar anatomical structures of brain MR images across patients would help the expert in diagnosis of diseases. In this paper, modified local binary pattern with ternary encoding called modified local ternary pattern (MOD-LTP) is introduced, which is more discriminant and less sensitive to noise in near-uniform regions, to locate slices belonging to the same level from the brain MR image database. The ternary encoding depends on a threshold, which is a user-specified one or calculated locally, based on the variance of the pixel intensities in each window. The variancebased local threshold makes the MOD-LTP more robust to noise and global illumination changes. The retrieval performance is shown to improve by taking region-based moment features of MODLTP and iteratively reweighting the moment features of MOD-LTP based on the user’s feedback. The average rank obtained using iterated and weighted moment features of MOD-LTP with a local variance-based threshold, is one to two times better than rotational invariant LBP (Unay, D., Ekin, A. and Jasinschi, R.S. (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed., 14, 897–903.) in retrieving the first 10 relevant images

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved