924 resultados para selective serotonin reuptake inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transthyretin (TTR), a tetrameric thyroxine (T4) carrier protein, is associated with a variety of amyloid diseases. In this study, we explore the potential of biphenyl ethers (BPE), which are shown to interact with a high affinity to its T4 binding site thereby preventing its aggregation and fibrillogenesis. They prevent fibrillogenesis by stabilizing the tetrameric ground state of transthyretin. Additionally, we identify two new structural templates (2-(5-mercapto-[1,3,4]oxadiazol-2-yl)-phenol and 2,3,6-trichloro-N-(4H-[1,2,4]triazol-3-yl) represented as compounds 11 and 12, respectively, throughout the manuscript) exhibiting the ability to arrest TTR amyloidosis. The dissociation constants for the binding of BPEs and compound 11 and 12 to TTR correlate with their efficacies of inhibiting amyloidosis. They also have the ability to inhibit the elongation of intermediate fibrils as well as show nearly complete (> 90%) disruption of the preformed fibrils. The present study thus establishes biphenyl ethers and compounds 11 and 12 as very potent inhibitors of TTR fibrillization and inducible cytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile, one-pot synthesis of thio and selenourea derivatives from amines using tetrathiomolybdate 1 and tetraseleno-tungstate 2 as sulfur and selenium transfer reagents, respectively, is reported. The compounds were tested for their activity as urease inhibitors and some of the compounds showed potent activity in the nanomolar range towards jack bean urease. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

series of thiosugar derivatives (thiolevomannosans) derived from mannose were synthesized and their inhibitory activity was tested against alpha-mannosidase (jack bean). These inhibitors were found to be more potent than the well-known inhibitors like kifunensine and deoxymannojirimycin based on docking and biochemical studies. The sulfone derivative 10 was shown to be the best inhibitor of alpha-mannosidase with the K-i value of 350 nM. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron(III) complexes [Fe(L)(2)]Cl (1-3), where L is monoanionic N-salicylidene-arginine (sal-argH for 1), hydroxynaphthylidene-arginine (nap-argH for 2) and N-salicylidene-lysine (sal-lysH for 3), were prepared and their DNA binding and photo-induced DNA cleavage activity studied. Complex 3 as its hexafluorophosphate salt [Fe(sal-lysH)(2)](PF6)center dot 6H(2)O (3a) was structurally characterized by single crystal Xray crystallography. The crystals belonged to the triclinic space group P-1. The complex has two tridentate ligands in FeN2O4 coordination geometry with two pendant cationic amine moieties. Complexes 1 and 2 with two pendant cationic guanidinium moieties are the structural models for the antitumor antibiotics netropsin. The complexes are stable and soluble in water. They showed quasi-reversible Fe(III)/Fe(II) redox couple near 0.6 V in H2O-0.1 M KCl. The high-spin 3d(5)-iron(III) complexes with mu(eff) value of similar to 5.9 mu(B) displayed ligand-to-metal charge transfer electronic band near 500 mm in Tris-HCl buffer. The complexes show binding to Calf Thymus (CT) DNA. Complex 2 showed better binding propensity to the synthetic oligomer poly(dA)center dot poly(dT) than to CT-DNA or poly(dG)center dot poly(dC). All the complexes displayed chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent and cleaved supercoiled pUC19 DNA to its nicked circular form. They exhibited photo-induced DNA cleavage activity in UV-A light and visible light via a mechanistic pathway that involves the formation of reactive hydroxyl radical species. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of space-frequency block coded (SFBC) OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both inter-symbol interference (ISI) as well as inter-carrier interference (10). ISI occurs due to the violation of the 'quasi-static' fading assumption caused due to frequency- and/or time-selectivity of the channel. In addition, ICI occurs due to time-selectivity of the channel which results in loss of orthogonality among the subcarriers. In this paper, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones. The quinones autopolymerize to form dark pigments, an undesired effect. PPO is therefore the target for the development of antibrowning and antimelanization agents. A series of phenolic compounds experimentally evaluated for their binding affinity and inhibition constants were computationally docked to the active site of catechol oxidase. Docking studies suggested two distinct modes of binding, dividing the docked ligands into two groups. Remarkably, the first group corresponds to ligands determined to be substrates and the second group corresponds to reversible inhibitors. Analyses of the complexes provide structural explanations for correlating subtle changes in the position and nature of the substitutions on o-diphenols to their functional properties as substrates and inhibitors. Higher reaction rates and binding are reckoned by additional interactions of the substrates with key residues that line the hydrophobic cavity. The docking results suggest that inhibition of oxidation stems from an interaction between the aromatic carboxylic acid group and the apical His 109 of the four coordinates of the trigonal pyramidal coordination polyhedron of CuA. The spatial orientation of the hydroxyl in relation to the carboxylic group either allows a perfect fit in the substrate cavity, leading to inhibition, or because of a steric clash flips the molecule vertically, facilitating oxidation. This is the first study to explain, at the molecular level, the determinants Of substrate and inhibitor specificity of a catechol oxidase, thereby providing a platform for the design of selective inhibitors useful to both the food and pharmaceutical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kohonneiden kolesterolipitoisuuksien alentamisessa käytettävien statiinien hyödyt sydän- ja verisuonisairauksien estossa on vahvasti osoitettu ja niiden käyttö on niin Suomessa kuin muuallakin maailmassa kasvanut voimakkaasti – Suomessa statiininkäyttäjiä on noin 600 000. Statiinilääkitys on pitkäaikaisessakin käytössä melko hyvin siedetty, mutta yleisimpinä haittavaikutuksina voi ilmetä lihasheikkoutta, -kipua ja -kramppeja, jotka voivat edetä jopa henkeä uhkaavaksi lihasvaurioksi. Lihashaittariski suurenee suhteessa statiiniannokseen ja plasman statiinipitoisuuksiin. Statiinien plasmapitoisuuksissa, tehossa ja haittavaikutusten ilmenemisessä on suuria potilaskohtaisia eroja. SLCO1B1-geenin koodaama OATP1B1-kuljetusproteiini kuljettaa monia elimistön omia aineita ja lääkeaineita verenkierrosta solukalvon läpi maksasoluun, mm. statiineja, joiden kolesterolia alentava vaikutus ja poistuminen elimistöstä tapahtuvat pääosin maksassa. Erään SLCO1B1-geenin nukleotidimuutoksen (c.521T>C) tiedetään heikentävän OATP1B1:n kuljetustehoa. Tässä väitöskirjatyössä selvitettiin SLCO1B1-geenin perinnöllistä muuntelua suomalaisilla ja eri väestöissä maailmanlaajuisesti. Lisäksi selvitettiin SLCO1B1:n muunnosten vaikutusta eri statiinien pitoisuuksiin (farmakokinetiikka) ja vaikutuksiin (farmakodynamiikka) sekä kolesteroliaineenvaihduntaan. Näihin tutkimuksiin valittiin SLCO1B1-genotyypin perusteella terveitä vapaaehtoisia koehenkilöitä, joille annettiin eri päivinä kerta-annos kutakin tutkittavaa statiinia: fluvastatiinia, pravastatiinia, simvastatiinia, rosuvastatiinia ja atorvastatiinia. Verinäytteistä määritettiin plasman statiinien ja niiden aineenvaihduntatuotteiden sekä kolesterolin ja sen muodostumista ja imeytymistä kuvaavien merkkiaineiden pitoisuuksia. Toiminnallisesti merkittävien SLCO1B1-geenimuunnosten esiintyvyydessä todettiin suuria eroja eri väestöjen välillä. Suomalaisilla SLCO1B1 c.521TC-genotyypin (geenimuunnos toisessa vastinkromosomissa) esiintyvyys oli noin 32 % ja SLCO1B1 c.521CC-genotyypin (geenimuunnos molemmissa vastinkromosomeissa) esiintyvyys noin 4 %. Globaalisti geenimuunnosten esiintyvyys korreloi maapallon leveyspiirien kanssa siten, että matalaan transportteriaktiivisuuteen johtavat muunnokset olivat yleisimpiä pohjoisessa ja korkeaan aktiivisuuteen johtavat päiväntasaajan lähellä asuvilla väestöillä. SLCO1B1-genotyypillä oli merkittävä vaikutus statiinien plasmapitoisuksiin lukuun ottamatta fluvastatiinia. Simvastatiinihapon plasmapitoisuudet olivat keskimäärin 220 %, atorvastatiinin 140 %, pravastatiinin 90 % ja rosuvastatiinin 70 % suuremmat c.521CC-genotyypin omaavilla koehenkilöillä verrattuna normaalin c.521TT-genotyypin omaaviin. Genotyypillä ei ollut merkittävää vaikutusta minkään statiinin tehoon tässä kerta-annostutkimuksessa, mutta geenimuunnoksen kantajilla perustason kolesterolisynteesinopeus oli suurempi. Tulokset osoittavat, että SLCO1B1 c.521T>C geenimuunnos on varsin yleinen suomalaisilla ja muilla ei-afrikkalaisilla väestöillä. Tämä geenimuunnos voi altistaa erityisesti simvastatiinin, mutta myös atorvastatiinin, pravastatiinin ja rosuvastatiinin, aiheuttamille lihashaitoille suurentamalla niiden plasmapitoisuuksia. SLCO1B1:n geenimuunnoksen testaamista voidaan tulevaisuudessa käyttää apuna valittaessa sopivaa statiinilääkitystä ja -annosta potilaalle, ja näin parantaa sekä statiinihoidon turvallisuutta että tehoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.