989 resultados para segmentazione immagini mediche algoritmo Canny algoritmo watershed edge detection
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
El presente trabajo estudia la viabilidad a la hora de aplicar un modelo de programación basado en la extracción de paralelismo a nivel de tareas sobre distintas arquitecturas heterogéneas basadas en un procesador multinúcleo de propósito general acelerado con uno o más aceleradores hardware. Se ha implementado una aplicación completa cuyo objetivo es la detección de bordes en una imagen (implementando el Algoritmo de Canny), y se ha evaluado en detalle su rendimiento sobre distintos tipos de arquitecturas, incluyendo CPUs multinúcleo de última generación, sistemas multi-GPU y una arquitectura objetivo basada en procesadores ARM Cortex-A15 acelerados mediante un DSP C66x de la compañía Texas Instruments. Los resultados experimentales demuestran la viabilidad de este tipo de implementación también para arquitecturas heterogéneas novedosas como esta última, e ilustran la facilidad de programación que introduce este tipo de modelos de programación sobre arquitecturas de propósito específico.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, 2016.
Resumo:
La tesi tratta della tecnica per il riconoscimento facciale delle autofacce, seguendo come traccia l'articolo "Eigenface for Recognition" di Turk e Pentland, pubblicato nel 1991. In particolare ho verificato la semplicità dell'algoritmo che caratterizza questa tecnica testandola sulle immagini di alcuni soggetti dell'MR2 Face Database grazie al codice che ho implementato a partire da quello di Michael Scheinfeild.Il primo capitolo tratta brevemente della storia delle tecniche di riconoscimento facciale studiate fino agli anni '90. Nel secondo capitolo vengono riportati alcuni richiami di autovalori, autovettori, varianza e covarianza.Nel terzo capitolo viene trattata la tecnica autofacce passaggio per passaggio, facendo riferimento alla verifica che ho fatto in laboratorio. In particolare si trattano la generazione dello spazio delle autofacce e quella della procedura di riconoscimento facciale, seguite da un breve accenno al tipo di problema a cui si approccia questa tecnica.
Resumo:
Anche se l'isteroscopia con la biopsia endometriale è il gold standard nella diagnosi della patologia intracavitaria uterina, l'esperienza dell’isteroscopista è fondamentale per una diagnosi corretta. Il Deep Learning (DL) come metodica di intelligenza artificiale potrebbe essere un aiuto per superare questo limite. Sono disponibili pochi studi con risultati preliminari e mancano ricerche che valutano le prestazioni dei modelli di DL nell'identificazione delle lesioni intrauterine e il possibile aiuto derivato dai fattori clinici. Obiettivo: Sviluppare un modello di DL per identificare e classificare le patologie endocavitarie uterine dalle immagini isteroscopiche. Metodi: È stato eseguito uno studio di coorte retrospettivo osservazionale monocentrico su una serie consecutiva di casi isteroscopici di pazienti con patologia intracavitaria uterina confermata all’esame istologico eseguiti al Policlinico S. Orsola. Le immagini isteroscopiche sono state usate per costruire un modello di DL per la classificazione e l'identificazione delle lesioni intracavitarie con e senza l'aiuto di fattori clinici (età, menopausa, AUB, terapia ormonale e tamoxifene). Come risultati dello studio abbiamo calcolato le metriche diagnostiche del modello di DL nella classificazione e identificazione delle lesioni uterine intracavitarie con e senza l'aiuto dei fattori clinici. Risultati: Abbiamo esaminato 1.500 immagini provenienti da 266 casi: 186 pazienti avevano lesioni focali benigne, 25 lesioni diffuse benigne e 55 lesioni preneoplastiche/neoplastiche. Sia per quanto riguarda la classificazione che l’identificazione, le migliori prestazioni sono state raggiunte con l'aiuto dei fattori clinici, complessivamente con precision dell'80,11%, recall dell'80,11%, specificità del 90,06%, F1 score dell’80,11% e accuratezza dell’86,74% per la classificazione. Per l’identificazione abbiamo ottenuto un rilevamento complessivo dell’85,82%, precision 93,12%, recall del 91,63% ed F1 score del 92,37%. Conclusioni: Il modello DL ha ottenuto una bassa performance nell’identificazione e classificazione delle lesioni intracavitarie uterine dalle immagini isteroscopiche. Anche se la migliore performance diagnostica è stata ottenuta con l’aiuto di fattori clinici specifici, questo miglioramento è stato scarso.
Resumo:
L’utilizzo di informazioni di profondità è oggi di fondamentale utilità per molteplici settori applicativi come la robotica, la guida autonoma o assistita, la realtà aumentata e il monitoraggio ambientale. I sensori di profondità disponibili possono essere divisi in attivi e passivi, dove i sensori passivi ricavano le informazioni di profondità dall'ambiente senza emettere segnali, bensì utilizzando i segnali provenienti dall'ambiente (e.g., luce solare). Nei sensori depth passivi stereo è richiesto un algoritmo per elaborare le immagini delle due camere: la tecnica di stereo matching viene utilizzata appunto per stimare la profondità di una scena. Di recente la ricerca si è occupata anche della sinergia con sensori attivi al fine di migliorare la stima della depth ottenuta da un sensore stereo: si utilizzano i punti affidabili generati dal sensore attivo per guidare l'algoritmo di stereo matching verso la soluzione corretta. In questa tesi si è deciso di affrontare questa tematica da un punto di vista nuovo, utilizzando un sistema di proiezione virtuale di punti corrispondenti in immagini stereo: i pixel delle immagini vengono alterati per guidare l'algoritmo ottimizzando i costi. Un altro vantaggio della strategia proposta è la possibilità di iterare il processo, andando a cambiare il pattern in ogni passo: aggregando i passi in un unico risultato, è possibile migliorare il risultato finale. I punti affidabili sono ottenuti mediante sensori attivi (e.g. LiDAR, ToF), oppure direttamente dalle immagini, stimando la confidenza delle mappe prodotte dal medesimo sistema stereo: la confidenza permette di classificare la bontà di un punto fornito dall'algoritmo di matching. Nel corso della tesi sono stati utilizzati sensori attivi per verificare l'efficacia della proiezione virtuale, ma sono state anche effettuate analisi sulle misure di confidenza: lo scopo è verificare se le misure di confidenza possono rimpiazzare o assistere i sensori attivi.
Resumo:
La Stereo Vision è un popolare argomento di ricerca nel campo della Visione Artificiale; esso consiste nell’usare due immagini di una stessa scena,prodotte da due fotocamere diverse, per estrarre informazioni in 3D. L’idea di base della Stereo Vision è la simulazione della visione binoculare umana:le due fotocamere sono disposte in orizzontale per fungere da “occhi” che guardano la scena in 3D. Confrontando le due immagini ottenute, si possono ottenere informazioni riguardo alle posizioni degli oggetti della scena.In questa relazione presenteremo un algoritmo di Stereo Vision: si tratta di un algoritmo parallelo che ha come obiettivo di tracciare le linee di livello di un area geografica. L’algoritmo in origine era stato implementato per la Connection Machine CM-2, un supercomputer sviluppato negli anni 80, ed era espresso in *Lisp, un linguaggio derivato dal Lisp e ideato per la macchina stessa. Questa relazione tratta anche la traduzione e l’implementazione dell’algoritmo in CUDA, ovvero un’architettura hardware per l’elaborazione pa- rallela sviluppata da NVIDIA, che consente di eseguire codice parallelo su GPU. Si darà inoltre uno sguardo alle difficoltà che sono state riscontrate nella traduzione da *Lisp a CUDA.
Resumo:
Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.
Resumo:
This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.
Resumo:
A base-cutter represented for a mechanism of four bars, was developed using the Autocad program. The normal force of reaction of the profile in the contact point was determined through the dynamic analysis. The equations of dynamic balance were based on the laws of Newton-Euler. The linkage was subject to an optimization technique that considered the peak value of soil reaction force as the objective function to be minimized while the link lengths and the spring constant varied through a specified range. The Algorithm of Sequential Quadratic Programming-SQP was implemented of the program computational Matlab. Results were very encouraging; the maximum value of the normal reaction force was reduced from 4,250.33 to 237.13 N, making the floating process much less disturbing to the soil and the sugarcane rate. Later, others variables had been incorporated the mechanism optimized and new otimization process was implemented .
Resumo:
Animal welfare has been an important research topic in animal production mainly in its ways of assessment. Vocalization is found to be an interesting tool for evaluating welfare as it provides data in a non-invasive way as well as it allows easy automation of process. The present research had as objective the implementation of an algorithm based on artificial neural network that had the potential of identifying vocalization related to welfare pattern indicatives. The research was done in two parts, the first was the development of the algorithm, and the second its validation with data from the field. Previous records allowed the development of the algorithm from behaviors observed in sows housed in farrowing cages. Matlab® software was used for implementing the network. It was selected a retropropagation gradient algorithm for training the network with the following stop criteria: maximum of 5,000 interactions or error quadratic addition smaller than 0.1. Validation was done with sows and piglets housed in commercial farm. Among the usual behaviors the ones that deserved enhancement were: the feed dispute at farrowing and the eventual risk of involuntary aggression between the piglets or between those and the sow. The algorithm was able to identify through the noise intensity the inherent risk situation of piglets welfare reduction.
Resumo:
The aim of this paper is to discuss some rhythmic differences between European and Brazilian Portuguese and their relationship to pretonic vowel reduction phenomena. After the basic facts of PE and PB are presented, we show that the issue cannot be discussed without taking into account secondary stress placement, and we proceed to present the algorithm-based approach to secondary stress in Portuguese, representative of Metrical Phonology analyses. After showing that this deterministic approach cannot adequately explain the variable position of secondary stress in both languages regarding words with an even number of pretonic syllables, we argue for the interpretation of secondary stress and therefore for the construction of rhythmic units at the PF interface, as suggested in Chomsky s Minimalist Program. We also propose, inspired by the constrain hierarchies as proposed in Optimality Theory, that such interpretation must take into account two different constraint rankings, in EP and BP. These different rankings would ultimately explain the rhythmic differences between both languages, as well as the different behavior of pretonic vowels with respect to reduction processes.
Resumo:
A common breeding strategy is to carry out basic studies to investigate the hypothesis of a single gene controlling the trait (major gene) with or without polygenes of minor effect. In this study we used Bayesian inference to fit genetic additive-dominance models of inheritance to plant breeding experiments with multiple generations. Normal densities with different means, according to the major gene genotype, were considered in a linear model in which the design matrix of the genetic effects had unknown coefficients (which were estimated in individual basis). An actual data set from an inheritance study of partenocarpy in zucchini (Cucurbita pepo L.) was used for illustration. Model fitting included posterior probabilities for all individual genotypes. Analysis agrees with results in the literature but this approach was far more efficient than previous alternatives assuming that design matrix was known for the generations. Partenocarpy in zucchini is controlled by a major gene with important additive effect and partial dominance.