972 resultados para rupture numérique
Resumo:
Abstract: The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices ? Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI). Based on latitude, longitude, altitude and distance from Atlantic Ocean, the 3 viticultural climatic indices were modeled and the algorithms applied to a DTM using GIS. The results show that Rio Grande do Sul has the following classes of viticultural climate: according to DI ? Moderately Dry, Sub-humid, Humid; according to HI ? Cool, Temperate, Temperate warm, Warm and Very Warm; according to CI ? Cool nights, Temperate nights, Warm nights. Based on the total surface, the most representatives viticultural climates are: « Humid x Temperate » (3,1%), « Humid x Temperate warm » (14,4%), « Humid x Warm » (52,6%), « Sub-humid x Warm » (20,0%) and « Sub-humid x Very warm » (5,8%). According to CI, the viticultural climates have a range of variation as a function of the interaction between « earlyness of the varieties x heliothermal availability ». Key words: climate classification, climate models, climatic Groups, zoning
Resumo:
Background: Aerosol production during normal breathing is often attributed to turbulence in the respiratory tract. That mechanism is not consistent with a high degree of asymmetry between aerosol production during inhalation and exhalation. The objective was to investigate production symmetry during breathing. Methods: The aerosol size distribution in exhaled breath was examined for different breathing patterns including normal breathing, varied breath holding periods and contrasting inhalation and exhalation rates. The aerosol droplet size distribution measured in the exhaled breath was examined in real time using an aerodynamic particle sizer. Results and Conclusions: The dependence of the particle concentration decay rate on diameter during breath holding was consistent with gravitational settling in the alveolar spaces. Also, deep exhalation resulted in a 4 to 6 fold increase in concentration and rapid inhalation produced a further 2 to 3 fold increase in concentration. In contrast rapid exhalation had little effect on the measured concentration. A positive correlation of the breath aerosol concentration with subject age was observed. The results were consistent with the breath aerosol being produced through fluid film rupture in the respiratory bronchioles in the early stages of inhalation and the resulting aerosol being drawn into the alveoli and held before exhalation. The observed asymmetry of production in the breathing cycle with very little aerosol being produced during exhalation, is inconsistent with the widely assumed turbulence induced aerosolization mechanism.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.
Resumo:
Aux confluences historiques et conceptuelles de la modernité, de la technologie, et de l’« humain », les textes de notre corpus négocient et interrogent de façon critique les possibilités matérielles et symboliques de la prothèse, ses aspects phénoménologiques et spéculatifs : du côté subjectiviste et conceptualiste avec une philosophie de la conscience, avec Merleau-Ponty ; et de l’autre avec les épistémologues du corps et historiens de la connaissance Canguilhem et Foucault. Le trope prometteur de la prothèse impacte sur les formations discursives et non-discursives concernant la reconstruction des corps, là où la technologie devient le corrélat de l’identité. La technologie s’humanise au contact de l’homme, et, en révélant une hybridité supérieure, elle phagocyte l’humain du même coup. Ce travail de sociologie des sciences (Latour, 1989), ou encore d’anthropologie des sciences (Hakken, 2001) ou d’anthropologie bioculturelle (Andrieu, 1993; Andrieu, 2006; Andrieu, 2007a) se propose en tant qu’exemple de la contribution potentielle que l’anthropologie biologique et culturelle peut rendre à la médecine reconstructrice et que la médecine reconstructrice peut rendre à la plastique de l’homme ; l’anthropologie biologique nous concerne dans la transformation biologique du corps humain, par l’outil de la technologie, tant dans son histoire de la reconstruction mécanique et plastique, que dans son projet d’augmentation bionique. Nous établirons une continuité archéologique, d’une terminologie foucaldienne, entre les deux pratiques. Nous questionnons les postulats au sujet des relations nature/culture, biologie/contexte social, et nous présentons une approche définitionnelle de la technologie, pierre angulaire de notre travail théorique. Le trope de la technologie, en tant qu’outil adaptatif de la culture au service de la nature, opère un glissement sémantique en se plaçant au service d’une biologie à améliorer. Une des clés de notre recherche sur l’augmentation des fonctions et de l’esthétique du corps humain réside dans la redéfinition même de ces relations ; et dans l’impact de l’interpénétration entre réalité et imaginaire dans la construction de l’objet scientifique, dans la transformation du corps humain. Afin de cerner les enjeux du discours au sujet de l’« autoévolution » des corps, les théories évolutionnistes sont abordées, bien que ne représentant pas notre spécialité. Dans le cadre de l’autoévolution, et de l’augmentation bionique de l’homme, la somation culturelle du corps s’exerce par l’usage des biotechnologies, en rupture épistémologique de la pensée darwinienne, bien que l’acte d’hybridation évolutionnaire soit toujours inscrit dans un dessein de maximisation bionique/génétique du corps humain. Nous explorons les courants de la pensée cybernétique dans leurs actions de transformation biologique du corps humain, de la performativité des mutilations. Ainsi technologie et techniques apparaissent-elles indissociables de la science, et de son constructionnisme social.
Resumo:
Defibrillator is a 16’41” musical work for solo performer, laptop computer and electric guitar. The electric guitar is processed in real-time by digital signal processing network in software, with gestural control provided by a foot-operated pedal board. --------- The work is informed by a range of ideas from the genres of electroacoustic music, western art music, popular music and cinematic sound. It seeks to fluidly cross and hybridise musical practices from these diverse sonic traditions and to develop a compositional language that draws upon multiple genres, but at the same time resists the ability to be located within a singular genre. Musical structures and sonic markers which form genre are ruptured at strategic levels of the musical structure in order to allow for a cross flow of concepts between genres. The process of rupture is facilitated by the practical implementation of music and sound reception theories into the compositional process. -------- The piece exhibits the by-products of a composer born into a media saturated environment, drawing on a range of musical and sonic traditions, actively seeking to explore the liminal space in between these traditions. The project stems from the author's research interests in locating points of connection between traditions of experimentation in diverse musical and sonic traditions arising from the broad uptake of media technologies in the early 20th century.
Resumo:
Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.
Resumo:
Peeling is an essential phase of post harvesting and processing industry; however the undesirable losses and waste rate that occur during peeling stage are always the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical method is the most preferred; this method keeps edible portions of produce fresh and creates less damage. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry which needs more study on technological aspects of this industrial segment. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. In the proposed study a nonlinear model which will be capable of simulating the peeling process specifically, will be developed. It is expected that unavailable information such as cutting force, maximum shearing force, shear strength, tensile strength and rupture stress will be quantified using the new FEA model. The outcomes will be used to optimize and improve the current mechanical peeling methods of this class of vegetables and thereby enhance the overall effectiveness of processing operations. Presented paper aims to review available literature and previous works have been done in this area of research and identify current gap in modelling and simulation of food processes.
Resumo:
This presentation explores molarization and overcoding of social machines and relationality within an assemblage consisting of empirical data of immigrant families in Australia. Immigration is key to sustainable development of Western societies like Australia and Canada. Newly arrived immigrants enter a country and are literally taken over by the Ministry of Immigration regarding housing, health, education and accessing job possibilities. If the immigrants do not know the official language(s) of the country, they enroll in language classes for new immigrants. Language classes do more than simply teach language. Language is presented in local contexts (celebrating the national day, what to do to get a job) and in control societies, language classes foreground values of a nation state in order for immigrants to integrate. In the current project, policy documents from Australia reveal that while immigration is the domain of government, the subject/immigrant is nevertheless at the core of policy. While support is provided, it is the subject/immigrant transcendent view that prevails. The onus remains on the immigrant to “succeed”. My perspective lies within transcendental empiricism and deploys Deleuzian ontology, how one might live in order to examine how segmetary lines of power (pouvoir) reflected in policy documents and operationalized in language classes rupture into lines of flight of nomad immigrants. The theoretical framework is Multiple Literacies Theory (MLT); reading is intensive and immanent. The participants are one Korean and one Sudanese family and their children who have recently immigrated to Australia. Observations in classrooms were obtained and followed by interviews based on the observations. Families also borrowed small video cameras and they filmed places, people and things relevant to them in terms of becoming citizen and immigrating to and living in a different country. Interviews followed. Rhizoanalysis informs the process of reading data. Rhizoanalysis is a research event and performed with an assemblage (MLT, data/vignettes, researcher, etc.). It is a way to work with transgressive data. Based on the concept of the rhizome, a bloc of data has no beginning, no ending. A researcher enters in the middle and exists somewhere in the middle, an intermezzo suggesting that the challenges to molar immigration lie in experimenting and creating molecular processes of becoming citizen.
Resumo:
Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.
Resumo:
LIP emplacement is linked to the timing and evolution of supercontinental break-up. LIP-related break-up produces volcanic rifted margins, new and large (up to 108 km2) ocean basins, and new, smaller continents that undergo dispersal and potentially reassembly (e.g., India). However, not all continental LIPs lead to continental rupture. We analysed the <330 Ma continental LIP record(following final assembly of Pangea) to find relationships between LIP event attributes (e.g., igneous volume, extent, distance from pre-existing continental margin) and ocean basin attributes (e.g., length of new ocean basin/rifted margin) and how these varied during the progressive break up of Pangea. No correlation exists between LIP magnitude and size of the subsequent ocean basin or rifted margin. Our review suggests a three-phased break-up history of Pangea: 1) “Preconditioning” phase (∼330–200 Ma): LIP events (n=7) occurred largely around the supercontinental margin clustering today in Asia, with a low (<20%) rifting success rate. The Panjal Traps at ∼280 Ma may represent the first continental rupturing event of Pangea, resulting in continental ribboning along the Tethyan margin; 2) “Main Break-up” phase (∼200–100 Ma): numerous large LIP events(n=10) in the supercontinent interior, resulting in highly successful fragmentation (90%) and large, new ocean basins(e.g., Central/South Atlantic, Indian, >3000 km long); 3) “Waning” phase (∼100–0 Ma): Declining LIP magnitudes (n=6), greater proximity to continental margins (e.g., Madagascar, North Atlantic, Afro-Arabia, Sierra Madre) producing smaller ocean basins (<2600 km long). How Pangea broke up may thus have implications for earlier supercontinent reconstructions and LIP record.
Resumo:
Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.
Resumo:
This practice-led research examines the generative function of loss in fiction that explores themes of grief and longing. This research considers how loss may be understood as a structuring mechanism through which characters evaluate time, resolve loss and affect future change. The creative work is a work of literary fiction titled A Distance Too Far Away. Aubrey, the story’s protagonist, is a woman in her twenties living in Brisbane in the early 1980s, carving out an independent life for herself away from her family. Through a flashback narrative sequence, told from the perspective of the twelve year narrator, Aubrey retraces a significant point of rupture in her life following a series of family tragedies. A Distance Too Far Away explores the tension between belonging and freedom, and considers how the past provides a malleable space for illuminating desire in order to traverse the gap between the world as it is and the world as we want it to be. The exegetical component of this research considers an alternative critical frame for interpreting the work of American author Anne Tyler, a writer who has had a significant influence on my own practice. Frequently criticised for creating sentimental and inert characters, many critics observe that nothing happens in Tyler’s circular plots. This research challenges these assertions, and through a contextual analysis of Tyler’s Ladder of Years (1995) investigates how Tyler engages with memory and nostalgia in order to move across time and resolve loss.
Resumo:
Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.
Resumo:
Now is an opportune moment to consider the shifts in youth and popular culture that are signalled by texts that are being read and viewed by young people. In a world seemingly compromised by climate change, political and religious upheavals and economic irresponsibility, and at a time of fundamental social change, young people are devouring fictional texts that focus on the edges of identity, the points of transition and rupture, and the assumption of new and hybrid identities. This book draws on a range of international texts to address these issues, and to examine the ways in which key popular genres in the contemporary market for young people are being re-defined and re-positioned in the light of urgent questions about the environment, identity, one's place in the world, and the fragile nature of the world itself. The key questions are: what are the shifts and changes in youth culture that are identified by the market and by what young people read and view? How do these texts negotiate the addressing of significant questions relating to the world today? Why are these texts so popular with young people? What are the most popular genres in contemporary best-sellers and films? Do these texts have a global appeal, and, if so, why? These over-arching themes and ideas are presented as a collection of inter-related essays exploring a rich variety of forms and styles from graphic novels to urban realism, from fantasy to dystopian writing, from epic narratives to television musicals. The subjects and themes discussed here reveal the quite remarkable diversity of issues that arise in youth fiction and the variety of fictional forms in which they are explored. Once seen as not as important as adult fiction, this book clearly demonstrates that youth fiction (and the popular appeal of this fiction) is complex, durable and far-reaching in its scope.