832 resultados para rump fat thickness
Resumo:
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.
Resumo:
Introduction: Pulmonary fat embolism (PFE) can be a cause of death in cases with trauma, during orthopedic surgery and also in non-traumatic conditions, such as burns, pancreatitis, fatty liver or sickle cell disease. As PMA becomes more widespread, it is important to determine how it affects the diagnosis of PFE. Aims: The aim of this study was to determine if the oily contrast liquid used in PMA induces artefactual PFE, if such artefacts differ from original PFE and if PFE can be detected and graded before PMA. Material and methods: Cases of adults without signs of postmortem change and for which an autopsy with angiography was performed were selected for this study. Pulmonary biopsies of each lung were taken before and after the angiography as were fragments of each lung with a twin-edged knife during the autopsy. The samples were examined under the microscope without fixation or staining and after an Oil-Red O staining. PFE was graded according to Falci et al. Results: Non-artefactual (original) PFE was diagnosed in 4 cases on pre-PMA biopsies. As expected, structures with the aspect of PFE were present in all cases after angiography. The microscopical aspect of original and PMA induced PFE was identical. Grading of the PFE according to Falci et al. was depending on the quality of the biopsies. Conclusions: PMA with oily contrast induces artefactual PFE that cannot be visually differentiated from original PFE. Original PFE can however be diagnosed with pre-angiography biopsies. In order to assure the diagnosis and correct grading of PFE, the quality of the biopsy should be checked before PMA with oily contrast.
Resumo:
AIMS: Common carotid artery intima-media thickness (CCIMT) is widely used as a surrogate marker of atherosclerosis, given its predictive association with cardiovascular disease (CVD). The interpretation of CCIMT values has been hampered by the absence of reference values, however. We therefore aimed to establish reference intervals of CCIMT, obtained using the probably most accurate method at present (i.e. echotracking), to help interpretation of these measures. METHODS AND RESULTS: We combined CCIMT data obtained by echotracking on 24 871 individuals (53% men; age range 15-101 years) from 24 research centres worldwide. Individuals without CVD, cardiovascular risk factors (CV-RFs), and BP-, lipid-, and/or glucose-lowering medication constituted a healthy sub-population (n = 4234) used to establish sex-specific equations for percentiles of CCIMT across age. With these equations, we generated CCIMT Z-scores in different reference sub-populations, thereby allowing for a standardized comparison between observed and predicted ('normal') values from individuals of the same age and sex. In the sub-population without CVD and treatment (n = 14 609), and in men and women, respectively, CCIMT Z-scores were independently associated with systolic blood pressure [standardized βs 0.19 (95% CI: 0.16-0.22) and 0.18 (0.15-0.21)], smoking [0.25 (0.19-0.31) and 0.11 (0.04-0.18)], diabetes [0.19 (0.05-0.33) and 0.19 (0.02-0.36)], total-to-HDL cholesterol ratio [0.07 (0.04-0.10) and 0.05 (0.02-0.09)], and body mass index [0.14 (0.12-0.17) and 0.07 (0.04-0.10)]. CONCLUSION: We estimated age- and sex-specific percentiles of CCIMT in a healthy population and assessed the association of CV-RFs with CCIMT Z-scores, which enables comparison of IMT values for (patient) groups with different cardiovascular risk profiles, helping interpretation of such measures obtained both in research and clinical settings.
Resumo:
The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipe, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope (C-13) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.
Resumo:
Langue roumaine
Resumo:
OBJECTIVE: To evaluate the thickness of cartilage at the posterior aspect of the medial and lateral condyle in Osteoarthritis (OA) knees compared to non-OA knees using computed tomography arthrography (CTA). DESIGN: 535 consecutive knee CTAs (mean patient age = 48.7 ± 16.0; 286 males), were retrospectively analyzed. Knees were radiographically classified into OA or non-OA knees according to a modified Kellgren/Lawrence (K/L) grading scheme. Cartilage thickness at the posterior aspect of the medial and lateral femoral condyles was measured on sagittal reformations, and compared between matched OA and non-OA knees in the whole sample population and in subgroups defined by gender and age. RESULTS: The cartilage of the posterior aspect of medial condyle was statistically significantly thicker in OA knees (2.43 mm (95% confidence interval (CI) = 2.36, 2.51)) compared to non-OA knees (2.13 mm (95%CI = 2.02, 2.17)) in the entire sample population (P < 0.001), as well as for all subgroups of patients over 40 years old (all P ≤ 0.01), except for females above 60 years old (P = 0.07). Increase in cartilage thickness at the posterior aspect of the medial condyle was associated with increasing K/L grade in the entire sample population, as well as for males and females separately (regression coefficient = 0.10-0.12, all P < 0.001). For the lateral condyle, there was no statistically significant association between cartilage thickness and OA (either presence of OA or K/L grade). CONCLUSIONS: Cartilage thickness at the non-weight-bearing posterior aspect of the medial condyle, but not of the lateral condyle, was increased in OA knees compared to non-OA knees. Furthermore, cartilage thickness at the posterior aspect of the medial condyle increased with increasing K/L grade.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
PURPOSE: To improve fat saturation in coronary MRA at 3T by using a spectrally selective adiabatic T2 -Prep (WSA-T2 -Prep). METHODS: A conventional adiabatic T2 -Prep (CA-T2 -Prep) was modified, such that the excitation and restoration pulses were of differing bandwidths. On-resonance spins are T2 -Prepared, whereas off-resonance spins, such as fat, are spoiled. This approach was combined with a CHEmically Selective Saturation (CHESS) pulse to achieve even greater fat suppression. Numerical simulations were followed by phantom validation and in vivo coronary MRA. RESULTS: Numerical simulations demonstrated that augmenting a CHESS pulse with a WSA-T2 -Prep improved robustness to B1 inhomogeneities and that this combined fat suppression was effective over a broader spectral range than that of a CHESS pulse in a conventional T2 -Prepared sequence. Phantom studies also demonstrated that the WSA-T2 -Prep+CHESS combination produced greater fat suppression across a range of B1 values than did a CA-T2 -Prep+CHESS combination. Lastly, in vivo measurements demonstrated that the contrast-to-noise ratio between blood and myocardium was not adversely affected by using a WSA-T2 -Prep, despite the improved abdominal and epicardial fat suppression. Additionally, vessel sharpness improved. CONCLUSION: The proposed WSA-T2 -Prep method was shown to improve fat suppression and vessel sharpness as compared to a CA-T2 -Prep technique, and to also increase fat suppression when combined with a CHESS pulse.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
This corrects the article on p. e73445 in vol. 8.]. This corrects the article "Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Non-Obese Women" , e73445. There was an error in the title of the article. The correct version of the title in the article is: Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Obese Women The correct citation is: Martin F-PJ, Montoliu I, Collino S, Scherer M, Guy P, et al. (2013) Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Obese Women. PLoS ONE 8(9): e73445. doi:10.1371/journal.pone.0073445
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.