917 resultados para reversible diffeomorphisms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. Although inducible-reversible transgenic mouse models are increasingly being used to investigate adult neurogenesis, transgene control requires the administration of an activator, doxycycline (Dox), with unknown effects on adult neurogenesis. Here, we tested the effect of Dox administration on adult neurogenesis in vivo. We found that 4 weeks of Dox treatment at doses commonly used for gene expression control, resulted in increased neurogenesis. Furthermore, the dendrites of new neurons displayed increased spine density. Concomitantly, Iba1-expressing microglia was reduced by Dox treatment. These results indicate that Dox treatment may interfere with parameters of relevance for the use of inducible transgenic mice in studies of adult neurogenesis or brain inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the efficiency and the effects of changes in parameters of chronic amygdala-hippocampal deep brain stimulation (AH-DBS) in mesial temporal lobe epilepsy (TLE). Eight pharmacoresistant patients, not candidates for ablative surgery, received chronic AH-DBS (130 Hz, follow-up 12-24 months): two patients with hippocampal sclerosis (HS) and six patients with non-lesional mesial TLE (NLES). The effects of stepwise increases in intensity (0-Off to 2 V) and stimulation configuration (quadripolar and bipolar), on seizure frequency and neuropsychological performance were studied. The two HS patients obtained a significant decrease (65-75%) in seizure frequency with high voltage bipolar DBS (≥1 V) or with quadripolar stimulation. Two out of six NLES patients became seizure-free, one of them without stimulation, suggesting a microlesional effect. Two NLES patients experienced reductions of seizure frequency (65-70%), whereas the remaining two showed no significant seizure reduction. Neuropsychological evaluations showed reversible memory impairments in two patients under strong stimulation only. AH-DBS showed long-term efficiency in most of the TLE patients. It is a valuable treatment option for patients who suffer from drug resistant epilepsy and who are not candidates for resective surgery. The effects of changes in the stimulation parameters suggest that a large zone of stimulation would be required in HS patients, while a limited zone of stimulation or even a microlesional effect could be sufficient in NLES patients, for whom the importance of the proximity of the electrode to the epileptogenic zone remains to be studied. Further studies are required to ascertain these latter observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treating human melanoma lines with dibutyryl adenosine 3':5'-cyclic monophosphate (dbc AMP) resulted in morphologic changes associated with the altered expression of cell surface antigens. After treatment, cells developed long cellular projections characteristic of mature melanocytes and showed the presence of an increased number of Stage II premelanosomes. In addition, induction of melanin synthesis, detected as brown perinuclear pigmentation, was observed. The AMP further drastically reduced the growth rate of the five melanoma cell lines that were tested. The influence of dbc AMP was completely reversible 3 days after the agent was removed from the culture medium. The antigenic phenotype of the melanoma lines was compared before and after dbc AMP treatment. This was done with four monoclonal antibodies directed against major histocompatibility complex (MHC) Class I and II antigens and 11 monoclonal antibodies defining eight different melanoma-associated antigenic systems. Treatment with dbc AMP reduced the expression of human leukocyte antigen (HLA)-ABC antigens and beta-2-microglobulin in five of five melanoma lines. In the two HLA-DR-positive cell lines dbc AMP reduced the expression of this antigen in one line and enhanced it in the other. No induction of HLA-DR or HLA-DC antigens was observed in the Class II negative cell lines. Furthermore, dbc-AMP modulated the expression of the majority of the melanoma antigenic systems tested. The expression of a 90-kilodalton (KD) antigen, which has been found to be upregulated by interferon-gamma, was markedly decreased in all the five cell lines. A similar decrease in the expression of the high molecular weight proteoglycan-associated antigen (220-240 KD) was observed. The reduced expression of Class I and II MHC antigens as well as the altered expression of the melanoma-associated antigens studied were shown to be reversible after dbc AMP was removed. Our results collectively show that the monoclonal antibody-defined melanoma-associated molecules are linked to differentiation. They could provide useful tools for monitoring the maturation of melanomas in vivo induced by chemical agents or natural components favoring differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The short and the long-term results of our experience with 25 consecutive patients who underwent multivalvular surgery for infective endocarditis are analysed. Preoperatively, 20/25 (80%) patients were in New York Heart Association (NYHA) stage III or IV, and 2/25 (8%) patients were in cardiogenic shock. All the diseased valves were replaced with mechanical bileaflet prosthesis except seven mitral valves and one tricuspid valve, which could be repaired. Major postoperative complications occurred in 3/25 (12%) patients: a fatal cerebral haemorrhage, a reversible cerebellar syndrome and an intractable heart failure, which required transplantation. During a mean follow-up of 4.7 years (range 6 months to 16.8 years), 7/25 (28%) patients suffered from valve-related complications: five bleedings (one died), one embolic event and one prosthetic valve thrombosis. The actuarial freedom of valve-related event at 10 years was 61.8 +/- 12.4%. There was no prosthetic endocarditis. At follow-up, 20/21 (95%) survivors were in NYHA stage I or II. Long-term outcome in our patient population operated on for multivalvular endocarditis, is satisfactory with no recurrent infection and excellent functional results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: During open heart surgery, so-called atrial chatter, a phenomenon due to right atria and/or caval collapse, is frequently observed. Collapse of the cava axis during cardiopulmonary bypass (CPB) limits venous drainage and may result downstream in reduced pump flow on (lack of volume) and upstream in increased after-load (stagnation), which in turn may both result in reduced or even inadequate end-organ perfusion. The goal of this study was to reproduce venous collapse in the flow bench. METHODS: In accordance with literature for venous anatomy, a caval tree system is designed (polyethylene, thickness 0.061 mm), which receives venous inflow from nine afferent veins. With water as medium and a preload of 4.4 mmHg, the system has an outflow of 4500 ml/min (Scenario A). After the insertion of a percutaneous venous cannula (23-Fr), the venous model is continuously served by the afferent branches in a venous test bench and venous drainage is augmented with a centrifugal pump (Scenario B). RESULTS: With gravity drainage (siphon: A), spontaneously reversible atrial chatter can be generated in reproducible fashion. Slight reduction in the outflow diameter allows for generation of continuous flow. With augmentation (B), irreversible collapse of the artificial vena cava occurs in reproducible fashion at a given pump speed of 2300 ± 50 RPM and a pump inlet pressure of -112 mmHg. Furthermore, bubbles form at the cannula tip despite the fact that the entire system is immersed in water and air from the environment cannot enter the system. This phenomenon is also known as cavitation and should be avoided because of local damage of both formed blood elements and endothelium, as well embolization. CONCLUSIONS: This caval model provides a realistic picture for the limitations of flow due to spontaneously reversible atrial chatter vs irreversible venous collapse for a given negative pressure during CPB. Temporary interruption of negative pressure in the venous line can allow for recovery of venous drainage. This know-how can be used not only for testing different cannula designs, but also for further optimizing perfusion strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. PATIENTS, METHODS: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. RESULTS: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65 +/- 10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p < 0.0001), followed by history of CAD (Hazard Ratio (HR) = 15.9; p = 0.0001), diabetic retinopathy (HR = 10.0; p = 0.001) and inability to exercise (HR = 7.7; p = 0.02). Patients with normal MPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. CONCLUSION: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a >5-fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

VEGF is considered as an important factor in the pathogenesis of macular edema. VEGF induces the rupture of the blood retinal barrier and may also influence the retinal pigment epithelial (RPE) outer retinal barrier. The aim of this work was to analyze the influence of the VEGF receptor pathways in the modulation of the RPE barrier breakdown in vitro and in vivo. The ARPE19 human junctions in culture are modulated by VEGF through VEGFR-1 but not through VEGFR-2. PlGF-1, that is a pure agonist of VEGFR-1, is produced in ARPE-19 cells under hypoxic conditions and mimics VEGF effects on the external retinal barrier as measured by TER and inulin flux. In vivo, the intravitreous injection of PlGF-1 induces a rupture of the external retinal barrier together with a retinal edema. This effect is reversible within 4 days. VEGF-E, that is a pure agonist of VEGFR-2, does not induce any acute effect on the RPE barrier. These results demonstrate that PlGF-1 can reproduce alterations of the RPE barrier occurring during diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astrocytes are responsible for the majority of the clearance of extracellular glutamate released during neuronal activity. dl-threo-beta-benzyloxyaspartate (TBOA) is extensively used as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na(+)-glutamate transport system is very efficient and its activation by glutamate causes rapid intracellular Na(+) concentration (Na(+)(i)) changes that enable real time monitoring of transporter activity. Na(+)(i) was monitored by fluorescence microscopy in single astrocytes using the fluorescent Na(+)-sensitive probe sodium-binding benzofuran isophtalate. When applied alone, TFB-TBOA, at a concentration of 1 muM, caused small alterations of Na(+)(i). TFB-TBOA inhibited the Na(+)(i) response evoked by 200 muM glutamate in a concentration-dependent manner with IC(50) value of 43+/-9 nM, as measured on the amplitude of the Na(+)(i) response. The maximum inhibition of glutamate-evoked Na(+)(i) increase by TFB-TBOA was >80%, but was only partly reversible. The residual response persisted in the presence of the AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na(+)(i) elevations caused by the application of d-aspartate, a transporter substrate that does not activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the membrane properties of cultured cortical neurons recorded in whole-cell patch clamp. Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to be one of the most useful pharmacological tools available so far for studying glial glutamate transporters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARYAstrocytes represent the largest cell population in the human brain. In addition to a well established role as metabolic support for neuronal activity, in the last years these cells have been found to accomplish other important and, sometimes, unexpected functions. The tight enwrapping of synapses by astrocytic processes and the predominant expression of glutamate uptake carriers in the astrocytic rather than neuronal plasma membranes brought to the definition of a critical involvement of astrocytes in the clearance of glutamate from synaptic junctions. Moreover, several publications showed that astrocytes are able to release chemical transmitters (gliotransmitters) suggesting their active implication in the control of synaptic functions. Among gliotransmitters, the best characterized is glutamate, which has been proposed to be released from astrocytes in a Ca2+ dependent manner via exocytosis of synaptic-like microvesicles.In my thesis I present results leading to substantial advancement of the understanding of the mechanisms by which astrocytes modulate synaptic activity in the hippocampus, notably at excitatory synapses on dentate granule cells. I show that tumor necrosis factor- alpha (TNFa), a molecule that is generally involved in immune system functions, critically controls astrocyte-to-synapse communication (gliotransmission) in the brain. With constitutive levels of TNFa present, activation of purinergic G protein-coupled receptors in astrocytes, called P2Y1 receptors, induces localized intracellular calcium ([Ca2+]j) elevation in astrocytic processes (measured by two-photon microscopy) followed by glutamate release and activation of pre-synaptic NMDA receptors resulting in synaptic potentiation. In preparations lacking TNFa, astrocytes respond with identical [Ca2+]i elevations but fail to induce neuromodulation. I find that TNFa specifically controls the glutamate release step of gliotransmission. Addition of very low (picomolar) TNFa concentrations to preparations lacking the cytokine, promptly reconstitutes both normal exocytosis in cultured astrocytes and gliotransmission in hippocampal slices. These data provide the first demonstration that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca2+]i elevations but also by permissive/homeostatic factors like TNFa.In addition, I find that higher and presumably pathological TNFa concentrations do not act just permissively but instead become direct and potent triggers of glutamate release from astrocytes, leading to a strong enhancement of excitatory synaptic activity. The TNFa action, like the one observed upon P2Y1R activation, is mediated by pre-synaptic NMDA receptors, but in this case the effect is long-lasting, and not reversible. Moreover, I report that a necessary molecular target for this action of TNFa is TNFR1, one of the two specific receptors for the cytokine, as I found that TNFa was unable to induce synaptic potentiation when applied in slices from TNFR1 knock-out (Tnfrlv") mice. I then created a double transgenic mouse model where TNFR1 is knocked out in all cells but can be re-expressed selectively in astrocytes and I report that activation of the receptors in these cells is sufficient to reestablish TNFa-dependent long-lasting potentiation of synaptic activity in the TNFR1 knock-out mice.I therefore discovered that TNFa is a primary molecule displaying both permissive and instructive roles on gliotransmission controlling synaptic functions. These reports might have profound implications for the understanding of both physiological and pathological processes associated to TNFa production, including inflammatory processes in the brain.RÉSUMÉLes astrocytes sont les cellules les plus abondantes du cerveau humain. Outre leur rôle bien établi dans le support métabolique de l'activité neuronale, d'autres fonctions importantes, et parfois inattendues de ces cellules ont été mises en lumière au cours de ces dernières années. Les astrocytes entourent étroitement les synapses de leurs fins processus qui expriment fortement les transporteurs du glutamate et permettent ainsi aux astrocytes de jouer un rôle critique dans l'élimination du glutamate de la fente synaptique. Néanmoins, les astrocytes semblent être capables de jouer un rôle plus intégratif en modulant l'activité synaptique, notamment par la libération de transmetteurs (gliotransmetteurs). Le gliotransmetteur le plus étudié est le glutamate qui est libéré par l'exocytose régulée de petites vésicules ressemblant aux vésicules synaptiques (SLMVs) via un mécanisme dépendant du calcium.Les résultats présentés dans cette thèse permettent une avancée significative dans la compréhension du mode de communication de ces cellules et de leur implication dans la transmission de l'information synaptique dans l'hippocampe, notamment des synapses excitatrices des cellules granulaires du gyrus dentelé. J'ai pu montrer que le « facteur de nécrose tumorale alpha » (TNFa), une cytokine communément associée au système immunitaire, est aussi fondamentale pour la communication entre astrocyte et synapse. Lorsqu'un niveau constitutif très bas de TNFa est présent, l'activation des récepteurs purinergiques P2Y1 (des récepteurs couplés à protéine G) produit une augmentation locale de calcium (mesurée en microscopie bi-photonique) dans l'astrocyte. Cette dernière déclenche ensuite une libération de glutamate par les astrocytes conduisant à l'activation de récepteurs NMDA présynaptiques et à une augmentation de l'activité synaptique. En revanche, dans la souris TNFa knock-out cette modulation de l'activité synaptique par les astrocytes n'est pas bien qu'ils présentent toujours une excitabilité calcique normale. Nous avons démontré que le TNFa contrôle spécifiquement l'exocytose régulée des SLMVs astrocytaires en permettant la fusion synchrone de ces vésicules et la libération de glutamate à destination des récepteurs neuronaux. Ainsi, nous avons, pour la première fois, prouvé que la modulation de l'activité synaptique par l'astrocyte nécessite, pour fonctionner correctement, des facteurs « permissifs » comme le TNFa, agissant sur le mode de sécrétion du glutamate astrocytaire.J'ai pu, en outre, démontrer que le TNFa, à des concentrations plus élevées (celles que l'on peut observer lors de conditions pathologiques) provoque une très forte augmentation de l'activité synaptique, agissant non plus comme simple facteur permissif mais bien comme déclencheur de la gliotransmission. Le TNFa provoque 1'activation des récepteurs NMD A pré-synaptiques (comme dans le cas des P2Y1R) mais son effet est à long terme et irréversible. J'ai découvert que le TNFa active le récepteur TNFR1, un des deux récepteurs spécifiques pour le TNFa. Ainsi, l'application de cette cytokine sur une tranche de cerveau de souris TNFR1 knock-out ne produit aucune modification de l'activité synaptique. Pour vérifier l'implication des astrocytes dans ce processus, j'ai ensuite mis au point un modèle animal doublement transgénique qui exprime le TNFR1 uniquement dans les astrocytes. Ce dernier m'a permis de prouver que l'activation des récepteurs TNFR1 astrocytaires est suffisante pour induire une augmentation de l'activité synaptique de manière durable.Nous avons donc découvert que le TNFa possède un double rôle, à la fois un rôle permissif et actif, dans le contrôle de la gliotransmission et, par conséquent, dans la modulation de l'activité synaptique. Cette découverte peut potentiellement être d'une extrême importance pour la compréhension des mécanismes physiologiques et pathologiques associés à la production du TNFa, en particulier lors de conditions inflammatoires.RÉSUMÉ GRAND PUBLICLes astrocytes représentent la population la plus nombreuse de cellules dans le cerveau humain. On sait, néanmoins, très peu de choses sur leurs fonctions. Pendant très longtemps, les astrocytes ont uniquement été considérés comme la colle du cerveau, un substrat inerte permettant seulement de lier les cellules neuronales entre elles. Il n'y a que depuis peu que l'on a découvert de nouvelles implications de ces cellules dans le fonctionnement cérébral, comme, entre autres, une fonction de support métabolique de l'activité neuronale et un rôle dans la modulation de la neurotransmission. C'est ce dernier aspect qui fait l'objet de mon projet de thèse.Nous avons découvert que l'activité des synapses (régions qui permettent la communication d'un neurone à un autre) qui peut être potentialisée par la libération du glutamate par les astrocytes, ne peut l'être que dans des conditions astrocytaires très particulières. Nous avons, en particulier, identifié une molécule, le facteur de nécrose tumorale alpha (TNFa) qui joue un rôle critique dans cette libération de glutamate astrocytaire.Le TNFa est surtout connu pour son rôle dans le système immunitaire et le fait qu'il est massivement libéré lors de processus inflammatoires. Nous avons découvert qu'en concentration minime, correspondant à sa concentration basale, le TNFa peut néanmoins exercer un rôle indispensable en permettant la communication entre l'astrocyte et le neurone. Ce mode de fonctionnement est assez probablement représentatif d'un processus physiologique qui permet d'intégrer la communication astrocyte/neurone au fonctionnement général du cerveau. Par ailleurs, nous avons également démontré qu'en quantité plus importante, le TNFa change son mode de fonctionnement et agit comme un stimulateur direct de la libération de glutamate par l'astrocyte et induit une activation persistante de l'activité synaptique. Ce mode de fonctionnement est assez probablement représentatif d'un processus pathologique.Nous sommes également arrivés à ces conclusions grâce à la mise en place d'une nouvelle souche de souris doublement transgéniques dans lesquelles seuls les astrocytes (etnon les neurones ou les autres cellules cérébrales) sont capables d'être activés par le TNFa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tako-tsubo cardiomyopathy or "transient left ventricular (LV) apical ballooning" clinically presents like acute myocardial infarction without angiographic stenosis on coronary angiogram and a transient (reversible) LV apical ballooning. We discuss here about a 56-year-old woman complains of first constrictive chest pain with ST elevation in leads V2-V6 and minimal enzymatic release. Coronary angiogram demonstrates vessels without stenosis and the left ventriculogram an extensive LV apical wall motion abnormalities. LV dysfunction will only be transient since 24 hours after admission echographic images demonstrate quite complete recovery of LV systolic function. The pain disappears 12 hours after admission and the creatine kinase level normalize after 48 hours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone increases transepithelial Na+ transport in the urinary bladder of Bufo marinus. The response is characterized by 3 distinct phases: 1) a lag period of about 60 min, ii) an initial phase (early response) of about 2 hr during which Na+ transport increases rapidly and transepithelial electrical resistance falls, and iii) a late phase (late response) of about 4 to 6 hr during which Na+ transport still increases significantly but with very little change in resistance. Triiodothyronine (T3, 6 nM) added either 2 or 18 hr before aldosterone selectively antagonizes the late response. T3 per se (up to 6 nM) has no effect on base-line Na+ transport. The antagonist activity of T3 is only apparent after a latent period of about 6 to 8 hr. It is not rapidly reversible after a 4-hr washout of the hormone. The effects appear to be selective for thyromimetic drugs since reverse T3 (rT3) is inactive and isopropyldiiodothyronine (isoT2) is more active than T3. The relative activity of these analogs corresponds to their relative affinity for T3 nuclear binding sites which we have previously described. Our data suggest that T3 might control the expression of aldosterone by regulating gene expression, e.g. by the induction of specific proteins, which in turn will inhibit the late mineralocorticoid response, without interaction with the early response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To describe the characteristics of reversible focal pleural thickenings (PTs) mimicking real plaques, that firstly suggest asbestos exposure or pleural metastasis; to propose an imaging strategy and propose an explanation for their mechanism of formation. PATIENTS AND METHODS: Retrospective review of data from 19 patients with PTs fitting the description of pleural plaques at chest computed tomography (CT) and presenting modifications (clearance or appearance) of at least one PT at an additional chest examination in prone position. RESULTS: A total of 152 PTs were recorded on the first chest CT examinations with a range of two to 19 pleural opacities per patient. All PTs had a posterior distribution in the lower lobes. On the additional acquisitions, 144 PTs disappeared. Seventeen patients presented complete regression of PTs and two patients presented persistence of eight PTs. CONCLUSION: Additional low dose acquisition in prone position should be performed in all patients presenting with focal PT in a dependent and basal location. This may allow to exclude a pleural plaque in case of asbestos exposure but also a pleural metastasis in oncologic patients. These reversible dependent PTs could be related to physiological focal accumulation of lymphatic fluid in subpleural area.