859 resultados para related-key differential
Resumo:
CB1, TRPV1 and NO can regulate glutamate release and modify defensive behaviors in regions related to defensive behavior such as the dorsolateral periaqueductal gray (dIPAG). A possible interaction between the endocannabinoid and nitrergic systems in this area, however, has not been investigated yet. The objective of the present work was to verify if activation of CB1 or TRPV1 receptors could interfere in the flight responses induced in rats by the injection of SIN-1, an NO donor, into the dIPAG. The results showed that local administration of a low dose (5 pmol) of anandamide (AEA) attenuated the flight responses, measured by the total distance moved and maximum speed in an open arena, induced by intra-dIPAG microinjection of SIN-1 (150 nmol). URB597 (0.1 nmol), an inhibitor of anandamide metabolism, produced similar effects. When animals were locally treated with the CB1 receptor antagonist AM251 the effective AEA dose (5 pmol) increased, rather than decreased, the flight reactions induced by SIN1-1. Higher (50-200 nmol) doses of AEA were ineffective and even tended to potentiate the SIN-1 effect. The TRPV1 antagonist capsazepine (CPZ, 30 nmol) prevented SIN-1 effects and attenuated the potentiation of its effect by the higher (200 nmol) AEA dose. The results indicate that AEA can modulate in a dual way the pro-aversive effects of NO in the dIPAG by activating CB1 or TRPV1 receptors. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
Resumo:
Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.
Resumo:
Background Staphylococcus aureus is the most common agent of septic arthritis that is a severe, rapidly progressive and destructive joint disease. Superantigens produced by S. aureus are considered the major arthritogenic factors. In this study, we compared the arthritogenic potential of five superantigen-producing staphylococcal strains. Methods Male C57BL/6 mice were intravenously infected with ATCC 19095 SEC+, N315 ST5 TSST-1+, S-70 TSST-1+, ATCC 51650 TSST-1+ and ATCC 13565 SEA+ strains. Clinical parameters as body weight, arthritis incidence and clinical score were daily evaluated. Joint histopathological analysis and spleen cytokine production were evaluated at the 14th day after infection. Results Weight loss was observed in all infected mice. ATCC 19095 SEC+, N315 ST5 TSST-1+ and S-70 TSST-1+ were arthritogenic, being the highest scores observed in ATCC 19095 SEC+ infected mice. Intermediate and lower clinical scores were observed in N315 ST5 TSST-1+ and S-70 TSST-1+ infected mice, respectively. The ATCC 13565 SEA+ strain caused death of 85% of the animals after 48 h. Arthritis triggered by the ATCC 19095 SEC+ strain was characterized by accentuated synovial hyperplasia, inflammation, pannus formation, cartilage destruction and bone erosion. Similar joint alterations were found in N315 ST5 TSST-1+ infected mice, however they were strikingly more discrete. Only minor synovial proliferation and inflammation were triggered by the S-70 TSST-1+ strain. The lowest levels of TNF-α, IL-6 and IL-17 production in response to S. aureus stimulation were found in cultures from mice infected with the less arthritogenic strains (S-70 TSST-1+ and ATCC 51650 TSST-1+). The highest production of IL-17 was detected in mice infected with the most arthritogenic strains (ATCC 19095 SEC+ and N315 ST5 TSST-1+). Conclusions Together these results demonstrated that S. aureus strains, isolated from biological samples, were able to induce a typical septic arthritis in mice. These results also suggest that the variable arthritogenicity of these strains was, at least in part, related to their differential ability to induce IL-17 production.
Resumo:
Abstract Background Cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self-renewing cell populations that constitute the bulk of tumor. Stem cells renewal and differentiation can be directly influenced by the oxygen levels of determined tissues, probably by the reduction of oxidative DNA damage in hypoxic regions, thus leading to a friendlier microenvironment, regarding to clonal expansion and for resistance to chemotherapeutic regimens. Furthermore, there have been strong data indicating a pivotal role of hypoxic niche in cancer stem cells development. There are evidence that hypoxia could drive the maintenance of CSC, via HIF-1α expression, but it still to be determined whether hypoxia markers are expressed in breast tumors presenting CD44+CD24-/low immunophenotype. Methods Immunohistochemical analysis of CD44+CD24-/low expression and its relationship with hypoxia markers and clinical outcome were evaluated in 253 samples of breast ductal carcinomas. Double-immunolabeling was performed using EnVision Doublestain System (Dako, Carpinteria, CA, USA). Slides were then scanned into high-resolution images using Aperio ScanScope XT and then, visualized in the software Image Scope (Aperio, Vista, CA, USA). Results In univariate analysis, CD44+CD24-/low expression showed association with death due to breast cancer (p = 0.035). Breast tumors expressing CD44+CD24-/low immunophenotype showed relationship with HIF-1α (p = 0.039) and negativity for HER-2 (p = 0.013). Conclusion Considering that there are strong evidences that the fraction of a tumour considered to be cancer stem cells is plastic depending upon microenvironmental signals, our findings provide further evidence that hypoxia might be related to the worse prognosis found in CD44+CD24-/low positive breast tumors.
Resumo:
A new genus, Cradoscrupocellaria n. gen., is erected for Scrupocellaria bertholletii Audouin, 1826), reported as widespread in tropical and subtropical waters. Here we select a neotype of this species in order to establish its identity and distinguish it from morphologically similar species. We include redescriptions and figures of additional species now assigned to this new genus: Cradoscrupocellaria curacaoensis (Fransen, 1986) n. comb., Cradoscrupocellaria hirsuta (Jullien & Calvet, 1903) n. comb., and Cradoscrupocellaria macrorhyncha (Gautier, 1962) n. comb. Five additional species are assigned to the genus: Cradoscrupocellaria ellisi (Vieira & Spencer Jones, 2012) n. comb., Cradoscrupocellaria nanshaensis (Liu, 1991) n. comb., Cradoscrupocellaria reptans (Linnaeus, 1758) n. comb., Cradoscrupocellaria serrata (Waters, 1909) n. comb., and Cradoscrupocellaria tenuirostris (Osburn, 1950) n. comb. Eighteen new species are described: Cradoscrupocellaria aegyptiana n. sp., Cradoscrupocellaria arisaigensis n. sp., Cradoscrupocellaria atlantica n. sp., Cradoscrupocellaria calypso n. sp., Cradoscrupocellaria floridana n. sp., Cradoscrupocellaria galapagensis n. sp., Cradoscrupocellaria gautieri n. sp., Cradoscrupocellaria gorgonensis n. sp., Cradoscrupocellaria hastingsae n. sp., Cradoscrupocellaria insularis n. sp., Cradoscrupocellaria jamaicensis n. sp., Cradoscrupocellaria lagaaiji n. sp., Cradoscrupocellaria macrorhynchoides n. sp., Cradoscrupocellaria makua n. sp., Cradoscrupocellaria marcusorum n. sp., Cradoscrupocellaria normani n. sp., Cradoscrupocellaria odonoghuei n. sp., and Cradoscrupocellaria osburni n. sp.
Resumo:
Background: Aggregatibacter actinomycetemcomitans serotypes are clearly associated with periodontitis or health, which suggests distinct strategies for survival within the host. Objective: We investigated the transcription profile of virulence-associated genes in A. actinomycetemcomitans serotype b (JP2 and SUNY 465) strains associated with disease and serotype a (ATCC 29523) strain associated with health. Design: Bacteria were co-cultured with immortalized gingival epithelial cells (OBA-9). The adhesion efficiency after 2 hours and the relative transcription of 13 genes were evaluated after 2 and 24 hours of interaction. Results: All strains were able to adhere to OBA-9, and this contact induced transcription of pgA for polysaccharide biosynthesis in all tested strains. Genes encoding virulence factors as Omp29, Omp100, leukotoxin, and CagE (apoptotic protein) were more transcribed by serotype b strains than by serotype a. ltxA and omp29, encoding the leukotoxin and the highly antigenic Omp29, were induced in serotype b by interaction with epithelial cells. Factors related to colonization (aae, flp, apaH, and pgA) and cdtB were upregulated in serotype a strain after prolonged interaction with OBA-9. Conclusion: Genes relevant for surface colonization and interaction with the immune system are regulated differently among the strains, which may help explaining their differences in association with disease.
Resumo:
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.
Resumo:
Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.
Resumo:
Ziel war die Entwicklung und Erprobung von Varianten des emotionalen Strooptests zur Analyse angstbezogener Aufmerksamkeitsprozesse bei Grundschulkindern. Dabei wurde überprüft, ob dieses kognitiv-experimentelle Verfahren zukünftig als objektives Testverfahren zur Diagnostik von Ängstlichkeit im Kindesalter geeignet ist. Ausgangspunkt waren zahlreiche Befunde für die Gruppe Erwachsener, wonach die Zuwendung auf bedrohliche Situationsmerkmalen für Ängstliche charakteristisch ist. Für das Kindesalter liegen hierzu nur wenige Studien mit zudem inkonsistenten Befundmuster vor. In insgesamt drei Studien wurde der emotionale Strooptest für das Grundschulalter adaptiert, indem Bilder bzw. altersentsprechendes Wortmaterial als Stimuli eingesetzt wurden. An den Studien nahmen nicht-klinische, nicht-ausgelesene Stichproben mit Kindern der zweiten bis vierten Grundschulklassen teil. Sowohl Ängstlichkeit als auch Zustandsangst der Kinder wurden jeweils über Selbst- und Fremdeinschätzungen (Eltern, Klassenlehrer, Versuchsleiter) erhoben. Die Ergebnisse sprechen für eine nur unzureichende Reliabilität emotionaler Interferenzeffekte. Auch ergaben sich (möglichenfalls infolge) keine substantiellen Hinweise auf differentielle angstbezogene Interferenzeffekte. Die Befunde sprechen vielmehr dafür, dass alle Kinder unabhängig von der Ängstlichkeit höhere Benennungszeiten für bedrohliche Stimuli im Vergleich zur Kontrollbedingung mit neutralen oder freundlichen Stimuli zeigten, wobei zugleich methodische Einflussfaktoren des Strooptests von Relevanz waren. Die Diskussion konzentriert sich auf entwicklungspsychologische Überlegungen sowie mögliche Bedingungen emotionaler Interferenzeffekte unter kritischer Berücksichtigung der Reliabilität emotionaler Stroopinterferenz.
Resumo:
Objectives. Blood pressure (BP) physiologically has higher and lower values during the active and rest period, respectively. Subjects failing to show the appropriate BP decrease (10-20%) on passing form diurnal activity to nocturnal rest and sleep have increased risk of target organ damage at the cardiac, vascular and cerebrovascular levels. Hypocretin (HCRT) releasing neurons, mainly located in the lateral hypothalamus, project widely to the central nervous system. Thus HCRT neurons are involved in several autonomic functions, including BP regulation. HCRT neurons also play a key role in wake-sleep cycle regulation, the lack of which becomes evident in HCRT-deficient narcoleptic patients. I investigated whether chronic lack of HCRT signaling alters BP during sleep in mouse models of narcolepsy. Methods. The main study was performed on HCRT-ataxin3 transgenic mice (TG) with selective post-natal ablation of HCRT neurons, HCRT gene knockout mice (KO) with preserved HCRT neurons, and Wild-Type control mice (WT) with identical genetic background. Experiments where replicated on TG and WT mice with hybrid genetic background (hTG and hWT, respectively). Mice were implanted with a telemetric pressure transducer (TA11PA-C10, DSI) and electrodes for discriminating wakefulness (W), rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Signals were recorded for 3 days. Mean BP values were computed in each wake-sleep state and analyzed by ANOVA and t-test with significance at p<0.05. Results. The decrease in BP between either NREMS or REMS and W was significantly blunted in TG and KO with respect to WT as well as in hTG with respect to hWT. Conclusions. Independently from the genetic background, chronic HCRT deficiency leads to a decreased BP difference between W and sleep potentially adverse in narcoleptic subjects. These data suggest that HCRT play an important role in the sleep-dependent cardiovascular control.
Resumo:
Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.
Resumo:
In this work we developed a new and convenient method for high resolution IEF of proteins, which we termed: “daisy chain”. Usually an IEF is accomplished with IPG strips of a desired pH range. For high resolution focusing we are using strips with pH range, which covers only one or two pH units. Thereby the pro-teins, which have isoelectrical point outside of this pH range, are lost. We evalu-ated commercially available IPG strips with consecutive or overlapping pH ranges and connected them serially acidic to basic end, to construct in this way a high resolution IEF-system. For the first time, we showed that a high resolution IEF is possible in such a system and that results were by no means worse than those obtained when the same sample was analyzed on individual single IPGs. The great advantage of our system is that amount of sample used in serial IPG IEF is explicitly lower than when same sample was analyzed on individual single IPGs. This method was subsequently successfully applied to valuable clinical samples from cancer patients and to mitochondrial preparations related to a European project in gerontology. We thus developed a suite of experimental strategies, which adequately address complex biological situations, in particular on the level of protein expression.
Resumo:
Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.