989 resultados para rapid eye movement
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
The equal sex ratios found in many species with heterogametic sex determination may be a consequence of selection for equality or the result of the Mendelian segregation of the two sex chromosomes. A lack of genetic variation in sex ratio in species with heterogamety has been the major obstacle in distinguishing between these two hypotheses. We overcome this obstacle by generating hybrids between two species of Drosophila. The resulting hybrid lines had biased sex ratios, allowing us to observe the evolution of sex ratio in replicate populations. Sex ratio converged towards 1:1 after 16 generations of natural selection. These changes in sex ratio were not due to differences in viability between the sexes and the loci underlying the variation in sex ratio were not sex-linked. Equal sex ratios may therefore be the result of natural selection as Fisher predicted.
Resumo:
Hypokinetic movement can be greatly improved in Parkinson's disease patients by the provision of external cues to guide movement. It has recently been reported, however, that movement performance in parkinsonian patients can be similarly improved in the absence of external cues by using attentional strategies, whereby patients are instructed to consciously attend to particular aspects of the movement which would normally be controlled automatically. To study the neurophysiological basis of such improvements in performance associated with the use of attentional strategies, movement-related cortical potentials were examined in Parkinson's disease and control subjects using a reaction time paradigm. One group of subjects were explicitly instructed to concentrate on internally timed responses to anticipate the presentation of a predictably timed go signal. Other subjects were given no such instruction regarding attentional strategies. Early-stage premovement activity of movement-related potentials was significantly increased in amplitude and reaction times were significantly faster for Parkinson's disease subjects when instructed to direct their attention toward internally generating responses rather than relying on external cues. It is therefore suggested that the use of attentional strategies may allow movement to be mediated by less automatic and more conscious attentional motor control processes which may be less impaired by basal ganglia dysfunction, and thereby improve movement performance in Parkinson's disease.
Resumo:
Large numbers of adults of certain species of butterfly flying in an apparently 'purposeful' manner are often noted by entomologists and the general public. Occasionally, these are recorded in the literature. Using these records we summarise information regarding the direction of movement in Australian butterflies and test whether there are consistent patterns that could account for known seasonal shifts in geographical range. The data were analysed using contingency tables and directionality statistics. Vanessa itea, Vanessa kershawi, Danaus plexippus, Danaus chrysippus and Badamia exclamationis flew predominately south in the spring-summer and north in the autumn-winter. Tirumala hamata has a strong southern component to its flight in spring but, as in Euploea core, appears non-directional in the autumn. For many supposedly known migratory species, the number of literature records are few, particularly in one season (mainly autumn). Thus, for Appias paulina, four of seven records were south in the spring-summer, as were six of nine records for Catopsilia pomona, and three of five for Zizina labradus. For Belenois java, flight records were only available for the spring and these showed geographical differences; predominantly north-west in northern Australia (Queensland) and south-west in southern Australia (Victoria, New South Wales). There were too few records for Papilio demoleus in the literature (four only) to draw any conclusions. Major exceptions to the seasonal trend of south in the spring and north in the autumn were Junonia villida, which showed a predominant north-westward direction in both seasons, and Eurema smilax, with a predominant southern or western flight in both seasons. We discuss these species specific trends in migration direction in relation to seasonal shifts in suitable habitat conditions, possible cues used in orientation and in timing changes in direction.
Resumo:
Three-dimensional trunk motion. trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Calls for more male teachers are prevalent in current gender debates in education. A dominant argument in this debate is that boys are often alienated from school because of a lack of male role models in feminised areas of the school curriculum and in primary schools. Little research has investigated male teachers' accounts of their work within feminised environments. Drawing on data collected in two research studies in music education, this paper focuses on accounts given by male teachers about (a) practices adopted specifically to work with boys and (b) the role of the male music teacher. Analysis of these data suggests that some male teachers working in feminised areas of the school curriculum adopt practices which, rather than challenging dominant constructions of masculinity, sometimes reinforce gender stereotypical behaviours in boys. We argue that calls for increasing the number of male teachers in feminised areas of schooling need also to be informed by open discussion of the underlying assumptions about masculinity which teachers themselves bring to their work.
Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death
Resumo:
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named Chopper to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and nonneural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.
Resumo:
Ultra-rapid opioid detoxification (UROD) involves the acceleration of opioid withdrawal hv administering thp opioid receptor antagonist naltrexone under general anaesthesia. There is evidence from uncontrolled and a few controlled studies that UROD accelerates opioid withdrawal and that it achieves high rates of completion of acute opioid withdrawal. However, there is clear evidence that the use of a general anaesthetic is not required to accelerate withdrawal or to achieve high rates of completion of acute opioid withdrawal. These goals can be achieved by using naltrexone or naloxone to accelerate withdrawal under light sedation, a procedure known as rapid opioid detoxification under sedation (ROD). There is also evidence that use of an opioid antagonist is not required to achieve a high rate of completion of acute opioid withdrawal. The mixed agonist-antagonist buprenorphine has achieved comparable rates of completion in similarly selected patients with fewer withdrawal symptoms. There is no evidence from controlled trials that either UROD or ROD increases the rate of abstinence from opioids 6 or 12 months after withdrawal. UROD and ROD may increase the number of patients who are inducted onto naltrexone maintenance (NM) therapy but extensive experience with NM therapy suggests that it only has a limited role in selected patients. Given the lack of evidence of substantially increased rates of abstinence, and the need for anaesthetists and high dependency beds, UROD has at best a very minor role in the treatment of a handful of opioid dependent patients who are unable to complete withdraw in any other way. ROD may have more of a role as one option for opioid withdrawal in well motivated patients who want to be rapidly inducted onto NM therapy or who want to enter other types of abstinence-oriented treatment.
Resumo:
The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Objective: Recent evidence suggests that cortical activity associated with voluntary movement is relatively shifted from medial to lateral premotor areas in Parkinson's disease. This shift occurs bilaterally even for unilateral responses. It is not clear whether the shift in processing reflects an overall change in movement strategy, thereby involving alternate cortical areas, or reflects a compensatory change whereby, given the appropriate conditions, less impaired cortical areas are able to provide a similar function in compensation for those areas which are more impaired. This issue was examined in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. Methods: Fourteen patients with hemi-Parkinson's disease and 15 age-matched control subjects performed a Go/NoGo finger movement task and the contingent negative variation (CNV) was recorded from 21 scalp positions. Results and conclusions: Maximal CNV amplitudes were found over central medial regions for control subjects, but were shifted more frontally for Parkinson's disease patients, reduced in amplitude over the midline and lateralized towards the side ipsilateral to the greatest basal ganglia impairment. This shift in cortical activity from medial to lateral areas in Parkinson's disease patients appears to reflect a compensatory mechanism operating predominantly on the side of greatest basal ganglia impairment. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Addition of a load to a moving upper limb produces a perturbation of the trunk due to transmission of mechanical forces. This experiment investigated the postural response of the trunk muscles in relation to unexpected limb loading. Subjects performed rapid, bilateral shoulder flexion in response to a stimulus. In one third of trials, an unexpected load was added bilaterally to the upper limbs in the first third of the movement. Trunk muscle electromyography, intra-abdominal pressure and upper limb and trunk motion were measured. A short-latency response of the erector spinae and transversus abdominis muscles occurred similar to 50 ms after the onset of the limb perturbation that resulted from addition of the load early in the movement and was coincident with the onset of the observed perturbation at the trunk. The results provide evidence of initiation of a complex postural response of the trunk muscles that is consistent with mediation by afferent input from a site distant to the lumbar spine, which may include afferents of the upper limb.
Resumo:
Movement-related potentials (MRPs) reflect increasing cortical activity related to the preparation and execution of voluntary movement. Execution and preparatory components may be separated by comparing MRPs recorded from actual and imagined movement. Imagined movement initiates preparatory processes, but not motor execution activity. MRPs are maximal over the supplementary motor area (SMA), an area of the cortex involved in the planning and preparation of movement. The SMA receives input from the basal ganglia, which are affected in Huntington's disease (HD), a hyperkinetic movement disorder. In order to further elucidate the effects of the disorder upon the cortical activity relating to movement, MRPs were recorded from ten HD patients, and ten age-matched controls, whilst they performed and imagined performing a sequential button-pressing task. HD patients produced MRPs of significantly reduced size both for performed and imagined movement. The component relating to movement execution was obtained by subtracting the MRP for imagined movement from the MRP for performed movement, and was found to be normal in HD. The movement preparation component was found by subtracting the MRP found for a control condition of watching the visual cues from the MRP for imagined movement. This preparation component in HD was reduced in early slope, peak amplitude, and post-peak slope. This study therefore reported abnormal MRPs in HD. particularly in terms of the components relating to movement preparation, and this finding may further explain the movement deficits reported in the disease.
Resumo:
1. The present study investigated the effects of lengthening and shortening actions on IT-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastroenemius (MG) of human subject, during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/- 15 deg s(-1). 2. H-reflex amplitude, in froth SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric R-reflex amplitude. 3. Four experiments were performed in which the latencies front the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found tee begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that, the H-reflex modulation seen in the present study is related to the tunic discharge of muscle spindle afferents and the consequent effects of transmission within the la pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may he attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in la fibres that are refractory following muscle spindle discharge during; rapid muscle lengthening, a reduced probability of transmitter release front the presynaptic terminal (homosynaptic post.-activation depression) and presynaptic inhibition of la afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.