917 resultados para radial hydraulic conductivity
Resumo:
Introducción y objetivo: El espasmo es la complicación más habitual en los cateterismos por arteria radial. Su frecuencia oscila entre el 10-30% y puede ser un factor limitante que impida la realización del cateterismo por esa vía. El objetivo de este estudio es evaluar con un nuevo protocolo de sedo-analgesia la reducción de la frecuencia del espasmo radial y la disminución de la ansiedad del paciente. Material y método: Estudio aleatorizado y prospectivo de 300 pacientes sometidos a cateterismo radial. Se randomizaron dos grupos, el Grupo I (n=150) con la pauta de sedación habitual (10mg diazepam sl) y el Grupo II (n=150) con una pauta de sedación con 2 mg de Midazolam + 0,035 mg/kg de Cloruro Mórfico y en caso de procedimientos de más de 45 minutos se añadía Fentanilo a 1 mcgr/kg. Resultados y conclusión: No se observaron diferencias significativas entre los dos grupos estudiados en cuanto a las características basales. La edad media de la población fue de 65 ± 11 años; 223 pacientes (74%) fueron hombres y el índice de masa corporal (IMC) medio 27,7 ± 3,8. Los pacientes del Grupo II presentaron reducción significativa del espasmo respecto a los del Grupo I (9,3% frente a 22,6%; p=0,002). También se objetivó una reducción significativa del dolor (2,05 frente a 2,77; p=0,007). La pauta sedo-analgésica propuesta demostró ser eficaz en la reducción del espasmo radial y del dolor durante el cateterismo.
Resumo:
We observe dendritic patterns in fluid flow in an anisotropic Hele-Shaw cell and measure the tip shapes and trajectories of individual dendritic branches under conditions where the pattern growth appears to be dominated by surface tension anisotropy and also under conditions where kinetic effects appear dominant. In each case, the tip position depends on a power law in the time, but the exponent of this power law can vary significantly among flow realizations. Averaging many growth exponents a yields a =0.640.09 in the surface tension dominated regime and a =0.660.09 in the kinetic regime. Restricting the analysis to realizations when a is very close to 0.6 shows great regularity across pattern regimes in the coefficient of the temporal dependence of the tip trajectory.
Resumo:
Kasvualustana käytetyn heikosti maatuneen rahkaturpeen lämmönjohtavuus
Resumo:
An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
Resumo:
Multiplan spreadsheet solutions were developed for a set of hydraulic and highway engineering computations of common interest to county engineers. These include earthwork, vertical and horizontal curves, staking superelevated curves and sign inventories for highways. The hydraulic applications were ditch flow, runoff, culvert size and stage discharge.
Resumo:
O trabalho foi desenvolvido com o objetivo de avaliar a evolução física do processo de remoção de água das sementes em secador estacionário, com cilindro central perfurado e distribuição radical de ar. A pesquisa foi conduzida com sementes de soja, variando o fluxo (26,9, 28,4 e 33,2 m³/minuto/t) e a temperatura do ar insuflado (42, 46 e 50ºC), considerando a posição das sementes (17, 34 e 51 cm em relação ao cilindro de insuflação) e o tempo de secagem (zero a doze horas, com intervalos de duas horas). Foram caracterizados o ar ambiente, o ar insuflado, as temperaturas e os teores de água da massa, as velocidades e curvas de secagem. As avaliações realizadas destacaram vantagens físicas operacionais da combinação de 28,4 m³/minuto/t com 46ºC e o contrário, com a combinação de 26,9 m³/minuto/t com 42ºC.
Resumo:
O trabalho avaliou, em sementes de soja, as conseqüências qualitativas provenientes da secagem estacionária com distribuição radial de ar, variando o fluxo (26,9, 28,4 e 33,2 m³/minuto/t) e a temperatura do ar insuflado (42, 46 e 50ºC), considerando a posição das sementes na massa (17, 34 e 51 cm em relação ao cilindro de insuflação) e o tempo de secagem (0 a 12 horas, com intervalos de quatro horas). Para tanto, além das determinações das temperaturas e dos teores de água da massa, foi avaliado o desempenho fisiológico das sementes no início e ao final de seis meses de armazenamento. Apesar das vantagens físicas operacionais resultantes da combinação entre o fluxo e a temperatura intermediários (28,4 m³/minuto/t e 46ºC), a qualidade fisiológica foi menos prejudicada nas combinações dos menores fluxos (26,9 e 28,4 m³/minuto/t) com a maior temperatura (50ºC) e do maior fluxo (33,2 m³/minuto/t) com as menores temperaturas (42 e 46ºC); entre estas, levando em conta os aspectos físico-operacionais, a associação de 28,4 m³/minuto/t com 50ºC foi a mais eficiente na retirada de água das sementes. Assim, admitindo os intervalos de fluxo (26,9 a 33,2 m³/minuto/t) e de temperatura (42 a 50ºC) estudados, conclui-se que a elevação na temperatura demanda redução no fluxo e, inversamente, o aumento no fluxo demanda redução na temperatura.
Resumo:
There is a wide range of evidence to suggest that permeability can be constrained through of induced polarization measurements. For clean sands and sandstones, current mechanistic models of induced polarization predict a relationship between the low-frequency time constant inferred from induced polarization measurements and the grain diameter. A number of observations do, however, disagree with this and indicate that the observed relaxation behavior is rather governed by the so-called dynamic pore radius L. To test this hypothesis, we have developed a set of new scaling relationships, which allow the relaxation time to be computed from the pore size and the permeability to be computed from both the Cole-Cole time constant and the formation factor. Moreover, these new scaling relationships can be also used to predict the dependence of the Cole-Cole time constant as a function of the water saturation under unsaturated conditions. Comparative tests of the proposed new relationships with regard to various published experimental results for saturated clean sands and sandstones as well as for partially saturated clean sandstones, do indeed confirm that the dynamic pore radius L is a much more reliable indicator of the observed relaxation behavior than grain-size-based models.
Resumo:
Abstract
MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging.
Resumo:
OBJECTIVE: The objective of our study was to investigate the impact of radial k-space sampling and steady-state free precession (SSFP) imaging on image quality in MRI of coronary vessel walls. SUBJECTS AND METHODS: Eleven subjects were examined on a 1.5-T MR system using three high-resolution navigator-gated and cardiac-triggered 3D black blood sequences (cartesian gradient-echo [GRE], radial GRE, and radial SSFP) with identical spatial resolution (0.9 x 0.9 x 2.4 mm3). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and motion artifacts were analyzed. RESULTS: The mean SNR and CNR of the coronary vessel wall were improved using radial imaging and were best using radial k-space sampling combined with SSFP imaging. Vessel border definition was similar for all three sequences. Radial k-space sampling was found to be less sensitive to motion. Consistently good image quality was seen with the radial GRE sequence. CONCLUSION: Radial k-space sampling in MRI of coronary vessel walls resulted in fewer motion artifacts and improved SNR and CNR. The use of SSFP imaging, however, did not result in improved coronary vessel wall visualization.
Resumo:
Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.
Resumo:
Hydrologic analysis is a critical part of transportation design because it helps ensure that hydraulic structures are able to accommodate the flow regimes they are likely to see. This analysis is currently conducted using computer simulations of water flow patterns, and continuing developments in elevation survey techniques result in higher and higher resolution surveys. Current survey techniques now resolve many natural and anthropogenic features that were not practical to map and, thus, require new methods for dealing with depressions and flow discontinuities. A method for depressional analysis is proposed that uses the fact that most anthropogenically constructed embankments are roughly more symmetrical with greater slopes than natural depressions. An enforcement method for draining depressions is then analyzed on those depressions that should be drained. This procedure has been evaluated on a small watershed in central Iowa, Walnut Creek of the South Skunk River, HUC12 # 070801050901, and was found to accurately identify 88 of 92 drained depressions and place enforcements within two pixels, although the method often tries to drain prairie pothole depressions that are bisected by anthropogenic features.