934 resultados para quantization noise
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.
Resumo:
The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical response of chalcopyrite was studied using electrochemical noise analysis (ENA). The assay was carried out under constant aeration using 30 mL in two electrochemical cells containing iron-free mineral salts solution. These cells were initially monitored for 56 hours, After 72 hours, 7.25x 10(10) cells mL(-1) of A, ferrooxidans strain LR were added in both cells and monitored until 128 h. Subsequent to this period, 0.927 mmol L-1 of silver ions and 400 mmol L-1 of chloride ions were added each one separately. Both conditions were monitored until 168 hours. According to results obtained, it was observed that Cl- ions addition induced an accelerated corrosion process. However, there is a tendency of the system to reach the stationary state due to repassivation of the electrodic surface. In the other side, the Ag+ addition contributed for the maintenance of the oxidant atmosphere, in spite of controversial effect caused by considerable variations in the R-n values, resulting in a instability in the chalcopyrite reactivity.
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans
Resumo:
Electrochemical noise (EN) is a generic term describing the phenomenon of spontaneous fluctuations of potential or current noise of electrochemical systems. Since this technique provides a non-destructive condition for investigating corrosion processes, it can be useful to study the electrochemical oxidation of mineral sulfides by microorganisms, a process known as bacterial leaching of metals. This technique was utilized to investigate the dissolution of a bornite electrode in the absence (first 79 h) and after the addition of Acidithiobacillus ferrooxidans (next 113 h) in salts mineral medium at pH 1.8, without addition of the energy source (Fe2+ ions) for this chemolithotrophic bacterium. Potential and current noise data have been determined simultaneously with two identical working bornite electrodes which were linked by a zero resistance ammeter (ZRA). The mean potential, E-coup, coupling current, I-coup, standard deviations of potential and current noise fluctuations and noise resistance, R-n, have been obtained for coupled bornite electrodes. Noise measurements were recorded twice a day in an unstirred solution at 30 degrees C. Significant changes in these parameters were observed when the A. ferrooxidans suspension was added, related with bacterial activity on reduced species present in the sulfide moisture (Fe2+, S2-). ENA was a suitable tool for monitoring the changes of the corrosion behavior of bornite due to the presence of bacterium. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.
Resumo:
In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.
Resumo:
Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.
Resumo:
An experimental investigation of the noise generated by cavitation in turbulent shear flows produced by confined sharp-edge orifice-plates is reported. The acoustic source strength of cavitation was determined by means of reciprocity type measurements. Experimentally determined scaling parameters are applied to a model to prototype scaling formula derived from dimensional analysis. The proposed formula is checked experimentally. Comparative photographic observations of the cavitation patterns for two different values of gas content are presented. The observed sound reduction, that occurs when supersaturated conditions exist downstream the orifice-plates, is explained by the effects of gas diffusion into the cavitation bubbles, and by simple acoustic attenuation.