981 resultados para pulmonary vascular resistance
Resumo:
Background. The chronic obstructive pulmonary disease (COPD) is associated with the strength and resistance decreasing in addition to the dysfunction on autonomic nervous system (ANS). The aerobic training isolated or in association with the resistance training showed evidence of beneficial effects on an autonomic modulation of COPD; however, there are no studies addressing the effect of isolated resistance training.Aims. This study aims at investigating the influence of resistance training on an autonomic modulation through heart rate variability (HRV), functional capacity and muscle strength in individuals with COPD.Design. Clinical series study.Setting. Outpatients.Population. The study involved 13 individuals with COPD.Methods. The experimental protocol was composed by an initial and final evaluation that consisted in autonomic evaluations (HRV), cardiopulmonary functional capacity evaluation (6-minute walk test) and strength evaluation (dynamometry) in addition by the resistance training performed by 24 sessions lasted 60 minutes each one and on a frequency of three times a week. The intensity was determined initially with 60% of one maximum repetition and was progressively increased in each five sessions until 80%.Results. The HRV temporal and spectral indexes analysis demonstrates improvement of autonomic modulation, with significant statistical increases to sympathetic and parasympathetic components of ANS representing by SDNN, LF and HF. In addition, it was observed significant statistical increases to shoulder abduction and. knee flexion strength and functional capacity.Conclusion. The exclusive resistance training performed was able to positively influence the autonomic modulation; in addition it promoted benefits on cardiorespiratory functional capacity and strength benefits in individuals with COPD.Clinical Rehabilitation Impact. This study could contribute to clinical and professionals researchers that act with COPD, even though the resistance component of pulmonary rehabilitation presents consensual benefits on several healthy indicators parameters. There is no evidence about the effects on HRV before. Moreover, this study showed, on clinical practice, the HRV uses as an ANS activity on sinus node evaluation and highlights further importance on scientific context.
Resumo:
Objective: To investigate the effects of elastic tubing training compared with conventional resistance training on the improvement of functional exercise capacity, muscle strength, fat-free mass, and systemic inflammation in patients with chronic obstructive pulmonary disease.Design: A prospective, randomized, eight-week clinical trial.Setting: The study was conducted in a university-based, outpatient, physical therapy clinic.Subjects: A total of 49 patients with moderate chronic obstructive pulmonary disease.Interventions: Participants were randomly assigned to perform elastic tubing training or conventional resistance training three times per week for eight weeks.Main measures: The primary outcome measure was functional exercise capacity. The secondary outcome measures were peripheral muscle strength, health-related quality of life assessed by the Chronic Respiratory Disease Questionnaire (CRDQ), fat-free mass, and cytokine profile.Results: After eight weeks, the mean distance covered during six minutes increased by 73 meters (69) in the elastic tubing group and by 42 meters (+/- 59) in the conventional group (p < 0.05). The muscle strength and quality of life improved in both groups (P < 0.05), with no significant differences between the groups. There was a trend toward an improved fat-free mass in both groups (P = 0.05). After the first and last sessions, there was an increase in interleukin 1 (IL-1) and interleukin 10 (IL-10) in both groups, while tumour necrosis factor alpha (TNF-) was stimulated only in the conventional training group.Conclusion: Elastic tubing training had a greater effect on functional exercise capacity than conventional resistance training. Both interventions were equally effective in improving muscle strength and quality of life.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with autonomic dysfunctions that can be evaluated through heart rate variability (HRV). Resistance training promotes improvement in autonomic modulation; however, studies that evaluate this scenario using geometric indices, which include nonlinear evaluation, thus providing more accurate information for physiological interpretation of HRV, are unknown. This study aimed to investigate the influence of resistance training on autonomic modulation, using geometric indices of HRV, and peripheral muscle strength in individuals with COPD. Fourteen volunteers with COPD were submitted to resistance training consisting of 24 sessions lasting 60 min each, with a frequency of three times a week. The intensity was determined as 60% of one maximum repetition and was progressively increased until 80% for the upper and lower limbs. The HRV and dynamometry were performed at two moments, the beginning and the end of the experimental protocol. Significant increases were observed in the RRtri (4·81 ± 1·60 versus 6·55 ± 2·69, P = 0·033), TINN (65·36 ± 35·49 versus 101·07 ± 63·34, P = 0·028), SD1 (7·48 ± 3·17 versus 11·04 ± 6·45, P = 0·038) and SD2 (22·30 ± 8·56 versus 32·92 ± 18·78, P = 0·022) indices after the resistance training. Visual analysis of the Poincare plot demonstrated greater dispersion beat-to-beat and in the long-term interval between consecutive heart beats. Regarding muscle strength, there was a significant increase in the shoulder abduction and knee flexion. In conclusion, geometric indices of HRV can predict improvement in autonomic modulation after resistance training in individuals with COPD; improvement in peripheral muscle strength in patients with COPD was also observed.
Resumo:
In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1) and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP) using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF). Telomerase+, myofibroblasts alpha-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci), severe ( mural) fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.
Resumo:
Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta. We speculated that these factors pass the placental barrier and leave a defect in the circulation of the offspring that predisposes to a pathological response later in life. The hypoxia associated with high-altitude exposure is expected to facilitate the detection of this problem.
Resumo:
We evaluated the feasibility of a modified embolization technique of pulmonary arteriovenous malformations (PAVM) using venous sac embolization with detachable coils combined with the feeding artery embolization with the Amplatzer vascular plug (AVP).
VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
Resumo:
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.
Resumo:
This study was supported by the UK Natural Environment Research Council (NE/H019456/1) to CJvdG, by the Wellcome Trust (WT 098051) to AWW and JP for sequencing costs, and by The Anna Trust (KB2008) to KDB. AWW and The Rowett Institute of Nutrition and Health, University of Aberdeen, receive core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS). We thank Paul Scott, Richard Rance and the Wellcome Trust Sanger Institute’s sequencing team for generating 16S rRNA gene sequence data.
Resumo:
Conjugation of drugs with antibodies to surface endothelial antigens is a potential strategy for drug delivery to endothelium. We studied antibodies to platelet-endothelial adhesion molecule 1 (PECAM-1, a stably expressed endothelial antigen) as carriers for vascular immunotargeting. Although 125I-labeled anti-PECAM bound to endothelial cells in culture, the antibody was poorly internalized by the cells and accumulated poorly after intravenous administration in mice and rats. However, conjugation of biotinylated anti-PECAM (b-anti-PECAM) with streptavidin (SA) markedly stimulated uptake and internalization of anti-PECAM by endothelial cells and by cells expressing PECAM. In addition, conjugation with streptavidin markedly stimulated uptake of 125I-labeled b-anti-PECAM in perfused rat lungs and in the lungs of intact animals after either intravenous or intraarterial injection. The antioxidant enzyme catalase conjugated with b-anti-PECAM/SA bound to endothelial cells in culture, entered the cells, escaped intracellular degradation, and protected the cells against H2O2-induced injury. Anti-PECAM/SA/125I-catalase accumulated in the lungs after intravenous injection or in the perfused rat lungs and protected these lungs against H2O2-induced injury. Thus, modification of a poor carrier antibody with biotin and SA provides an approach for facilitation of antibody-mediated drug targeting. Anti-PECAM/SA is a promising candidate for vascular immunotargeting of bioactive drugs.
Resumo:
Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor-α signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.
Resumo:
Heme oxygenase (HO) catalyzes the rate-limiting step in the degradation of heme to biliverdin, which is reduced by biliverdin reductase to bilirubin. Heme oxygenase-1 (HO-1) is inducible not only by its heme substrate, but also by a variety of agents causing oxidative stress. Although much is known about the regulation of HO-1 expression, the functional significance of HO-1 induction after oxidant insult is still poorly understood. We hypothesize and provide evidence that HO-1 induction serves to protect cells against oxidant stress. Human pulmonary epithelial cells (A549 cells) stably transfected with the rat HO-1 cDNA exhibit marked increases of HO-1 mRNA levels which were correlated with increased HO enzyme activity. Cells that overexpress HO-1 (A549-A4) exhibited a marked decrease in cell growth compared with wild-type A549 (A549-WT) cells or A549 cells transfected with control DNA (A549-neo). This slowing of cell growth was associated with an increased number of cells in G0/G1 phase during the exponential growth phase and decreased entry into the S phase, as determined by flow cytometric analysis of propidium iodide-stained cells and pulse experiments with bromodeoxyuridine. Furthermore, the A549-A4 cells accumulated at the G2/M phase and failed to progress through the cell cycle when stimulated with serum, whereas the A549-neo control cells exhibited normal cell cycle progression. Interestingly, the A549-A4 cells also exhibited marked resistance to hyperoxic oxidant insult. Tin protoporphyrin, a selective inhibitor of HO, reversed the growth arrest and ablated the increased survival against hyperoxia observed in the A549-A4 cells overexpressing HO-1. Taken together, our data suggest that overexpression of HO-1 results in cell growth arrest, which may facilitate cellular protection against non-heme-mediated oxidant insult such as hyperoxia.
Resumo:
Fusarium oxysporum is a soilborne fungal pathogen that causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. In this study, the interaction between F. oxysporum and the model plant Arabidopsis thaliana has been investigated to better understand the nature of host defences that are effective against the Fusarium wilt pathogen. The expression of salicylate- and jasmonate-responsive defence genes in F. oxysporum-challenged roots of A. thaliana plants as well as in the roots of plants whose leaves were treated with salicylate or jasmonate was analysed. Unexpectedly, genes (e.g. PR1, PDF1.2, and CHIB) encoding proteins with defensive functions or transcription factors (e.g. ERF1, AtERF2, AtERF4 and AtMYC2) known to positively or negatively regulate defences against F. oxysporum were not activated in F. oxysporum-inoculated roots. In contrast, the jasmonate-responsive defence gene PDF1.2 was induced in the leaves of plants whose roots were challenged with F. oxysporum, but the salicylate- responsive PR1 gene was not induced in the leaves of inoculated plants. Exogenous salicylic acid treatment prior to inoculation, however, activated PR1 and BGL2 defence gene expression in leaves and provided increased F. oxysporum resistance as evidenced by reduced foliar necrosis and plant death. Exogenous salicylic acid treatment of the foliar tissue did not activate defence gene expression in the roots of plants. This suggests that salicylate- dependent defences may function in foliar tissue to reduce the development of pathogen-induced wilting and necrosis. Despite the induction of defence gene expression in the leaves by jasmonate, this treatment did not lead to increased resistance to F. oxysporum. Overall, the results presented here suggest that the genetic manipulation of plant defence signalling pathways is a useful strategy to provide increased Fusarium wilt resistance.
Resumo:
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.