957 resultados para publishing
Resumo:
Collapsible soils are usually nonsaturated, low density, and metastable-structured soils that are known to exhibit a volume reduction following an episode of moisture increase or suction reduction. This paper describes the collapsible behavior of clayey sand based on controlled soil suction tests carried out on undisturbed samples from the city of Pereira Barreto, in the State of Sao Paulo, Brazil. Foundation settlements due to soil collapse are common in this region and occurred during the filling of the reservoir of the Tres Irmaos Dam, which induced the elevation of the groundwater table in different parts of Pereira Barreto. This paper shows that collapse strains depend on the stress and soil suction acting in the sample and that saturation is not necessary for a collapse to occur. The influence of soil suction, gradual wetting, and the wetting and drying cycle on the collapsible behavior of the soil is also shown and discussed.
Resumo:
Purpose - The purpose of this paper is to identify the key elements of a new rapid prototyping process, which involves layer-by-layer deposition of liquid-state material and at the same time using an ultraviolet line source to cure the deposited material. This paper reports studies about the behaviour of filaments, deposition accuracy, filaments interaction and functional feasibility of system. Additionally, the author describes the process which has been proposed, the equipment that has been used for these studies and the material which was developed in this application. Design/methodology/approach - The research has been separated into three study areas in accordance with their goals. In the first, both the behaviour of filament and deposition accuracy was studied. The design of the experiment is described with focus on four response factors (bead width, filament quality, deposition accuracy and deposition continuity) along with function of three control factors (deposition height, deposition velocity and extrusion velocity). The author also studied the interaction between filaments as a function of bead centre distance. In addition, two test samples were prepared to serve as a proof of the methodology and to verify the functional feasibility of the process which has been studied. Findings - The results show that the proposed process is functionally feasible, and that it is possible to identify the main effects of control factors over response factors. That analysis is used to predict the condition of process as a function of the parameters which control the process. Also identified were distances of centre beads which result in a specific behaviour. The types of interaction between filaments were analysed and sorted into: union, separation and indeterminate. At the end, the functional feasibility of process was proved whereby two test parts could be built. Originality/value - This paper proposes a new rapid prototyping process and also presents test studies related to this proposition. The author has focused on the filament behaviour, deposition accuracy, interaction between filaments and studied the functional feasibility of process to provide new information about this process, which at the same time is useful to the development of other rapid prototyping processes.
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.
Resumo:
This note addresses the relation between the differential equation of motion and Darcy`s law. It is shown that, in different flow conditions, three versions of Darcy`s law can be rigorously derived from the equation of motion.
Resumo:
This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.
Resumo:
Since the 1990s several large companies have been publishing nonfinancial performance reports. Focusing initially on the physical environment, these reports evolved to consider social relations, as well as data on the firm`s economic performance. A few mining companies pioneered this trend, and in the last years some of them incorporated the three dimensions of sustainable development, publishing so-called sustainability reports. This article reviews 31 reports published between 2001 and 2006 by four major mining companies. A set of 62 assessment items organized in six categories (namely context and commitment, management, environmental, social and economic performance, and accessibility and assurance) were selected to guide the review. The items were derived from international literature and recommended best practices, including the Global Reporting Initiative G3 framework. A content analysis was performed using the report as a sampling unit, and using phrases, graphics, or tables containing certain information as data collection units. A basic rating scale (0 or 1) was used for noting the presence or absence of information and a final percentage score was obtained for each report. Results show that there is a clear evolution in report`s comprehensiveness and depth. Categories ""accessibility and assurance"" and ""economic performance"" featured the lowest scores and do not present a clear evolution trend in the period, whereas categories ""context and commitment"" and ""social performance"" presented the best results and regular improvement; the category ""environmental performance,"" despite it not reaching the biggest scores, also featured constant evolution. Description of data measurement techniques, besides more comprehensive third-party verification are the items most in need of improvement.
Resumo:
The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950-1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Results from surveys on phytosociology and natural regeneration, focused on shrubs and trees, recorded incipient ecological succession. In addition, the most adapted species recorded on the overburden piles, as ranked by index of natural regeneration (RNT) plus importance value index (IVI), were as follows: Clethra scabra (RNT = 23.93%; IVI = 17.28%), Myrsine coriacea (RNT = 20.93%, IVI = 11.26%), Eupatorium intermedium (RNT 7.56%, IVI 0.40%), Miconia ligustroides (RNT 5.84%, IVI 2.37%), Ossaea amygdaloides (RNT 3.84%, IVI 1.30%), Tibouchina sellowiana (RNT 3.29%, M 1.94%), Eup. inulaefolium (RNT = 2.65%, IVI = 0.80%), and Baccharis dracunculifolia (RNT = 2.28%; IVI = 0.56%). High values of IVI and RNT exhibited by the exotic species Eucalyptus saligna (IVI = 21.73%, RNT = 51.41%) indicated strong competition between exotic and indigenous species. Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40-50 degrees) characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration.
Resumo:
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
Green tapes of Li(2)O-ZrO(2)-SiO(2)-Al(2)O(3) (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to xi potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525 degrees C, sintering at 700 degrees C for 1 h, and crystallization at 850 degrees C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.
Resumo:
The purpose of this article is to present a quantitative analysis of the human failure contribution in the collision and/or grounding of oil tankers, considering the recommendation of the ""Guidelines for Formal Safety Assessment"" of the International Maritime Organization. Initially, the employed methodology is presented, emphasizing the use of the technique for human error prediction to reach the desired objective. Later, this methodology is applied to a ship operating on the Brazilian coast and, thereafter, the procedure to isolate the human actions with the greatest potential to reduce the risk of an accident is described. Finally, the management and organizational factors presented in the ""International Safety Management Code"" are associated with these selected actions. Therefore, an operator will be able to decide where to work in order to obtain an effective reduction in the probability of accidents. Even though this study does not present a new methodology, it can be considered as a reference in the human reliability analysis for the maritime industry, which, in spite of having some guides for risk analysis, has few studies related to human reliability effectively applied to the sector.
Resumo:
P>Coconut water is an isotonic beverage naturally obtained from the green coconut. After extracted and exposed to air, it is rapidly degraded by enzymes peroxidase (POD) and polyphenoloxidase (PPO). To study the effect of thermal processing on coconut water enzymatic activity, batch process was conducted at three different temperatures, and at eight holding times. The residual activity values suggest the presence of two isoenzymes with different thermal resistances, at least, and a two-component first-order model was considered to model the enzymatic inactivation parameters. The decimal reduction time at 86.9 degrees C (D(86.9 degrees C)) determined were 6.0 s and 11.3 min for PPO heat labile and heat resistant fractions, respectively, with average z-value = 5.6 degrees C (temperature difference required for tenfold change in D). For POD, D(86.9 degrees C) = 8.6 s (z = 3.4 degrees C) for the heat labile fraction was obtained and D(86.9 degrees C) = 26.3 min (z = 6.7 degrees C) for the heat resistant one.
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.