964 resultados para problema isoperimetrico serie di Fourier convergenza in L^2 identità di Parseval
Resumo:
Mode of access: Internet.
Resumo:
"Advertisement" signed: Richard Taylor.
Resumo:
"29 April 1966."
Resumo:
"6 September 1966."
Resumo:
Issued Nov. 1977.
Resumo:
from left: 1 - Wm. Tate, conductor, on pilot [others unidentified]
Resumo:
Thesis (doctoral)--Universitat Marburg.
Resumo:
Thesis (doctoral)--
Resumo:
Thesis (doctoral)--Universitat Leipzig.
Resumo:
Mode of access: Internet.
Resumo:
In 1969, Denniston gave a construction of maximal arcs of degree n in Desarguesian projective planes of even order q, for all n dividing q. Recently, Mathon gave a construction method that generalized that of Denniston. In this paper we use that method to give maximal arcs that are not of Dermiston type for all n dividing q, 4 < n < q/2, q even. It is then shown that there are a large number of isomorphism classes of such maximal arcs when n is approximately rootq. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An X-ray visualization technique has been used for the quantitative determination of local liquid holdups distribution and liquid holdup hysteresis in a nonwetting two-dimensional (2-D) packed bed. A medical diagnostic X-ray unit has been used to image the local holdups in a 2-D cold model having a random packing of expanded polystyrene beads. An aqueous barium chloride solution was used as a fluid to achieve good contrast on X-ray images. To quantify the local liquid holdup, a simple calibration technique has been developed that can be used for most of the radiological methods such as gamma ray and neutron radiography. The global value of total liquid holdup, obtained by X-ray method, has been compared with two conventional methods: drainage and tracer response. The X-ray technique, after validation, has been used to visualize and quantify, the liquid hysteresis phenomena in a packed bed. The liquid flows in preferred paths or channels that carry droplets/rivulets of increasing size and number as the liquid flow rate is increased. When the flow is reduced, these paths are retained and the higher liquid holdup that persists in these regions leads to the holdup hysteresis effect. Holdup in some regions of the packed bed may be an order of magnitude higher than average at a particular flow rate. (c) 2005 American Institute of Chemical Engineers