972 resultados para pressure gradient
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
The dielectric constants of lead iron niobate (PFN) and 40% lead zinc niobate (PZN) added to lead iron niobate (PFN0.6-PZN(0.4)) have been measured as a function of pressure up to 6 GPa under isothermal conditions between room temperature and 348 K. The relaxer transition temperature measured at 1 kHz excitation frequency varies at a rate -24.5 K/GPa for PFN and at a rate of - 28.8 K/GPa for the PFN0.6-PZN(0.4) composition.
Resumo:
Identification of vulnerable plaque pre-rupture is extremely important for patient risk stratification. The mechanism of plaque rupture is still not entirely clear, but it is thought to be a process involving multiple factors. From a biomechanical viewpoint, plaque rupture is usually seen as a structural failure when the plaque cannot resist the hemodynamic blood pressure and shear stress exerted on it. However, the cardiovascular system is naturally a cyclical hemodynamic environment, and myocardial infarction can be a symptomatically quiescent but potentially progressive process when plaque ruptures at stresses much lower than its strength. Therefore, fatigue accumulation is a possible mechanism for plaque rupture. In this study, a crack growth model was developed, and the previously-mentioned hypothesis was tested by conducting a comparative study between 18 symptomatic and 16 asymptomatic patients with carotid stenosis.
Resumo:
Young females with mild hallux valgus (HV) have been identified as having an increased risk of first ray deformation. Little is known, however, about the biomechanical changes that might contribute to this increased risk. The purpose of this study was to compare kinetics changes during walking for mild HV subjects with high-heel-height shoes. Twelve female subjects (six with mild HV and six controls) participated in this study with heel height varying from 0 cm (barefoot) to 4.5 cm. Compared to healthy controls, patients had significantly higher peak pressure on the big toe area during barefoot walking. When the heel height increased, loading was transferred to medial side of the forefoot, and the big toe area suffered more impact compared to barefoot in mild HV. This study also demonstrated that the center of pressure (COP) inclines to medial side alteration after high-heeled shoes wearing. These findings indicate that mild HV people should be discouraged from wearing high-heeled shoes.
Resumo:
Background: Coronary tortuosity (CT) is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. Methods: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA) and coronary tortuosity number (CTN) on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. Results: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. Conclusions: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.
Resumo:
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subjectspecific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.
Resumo:
High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.
Resumo:
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
Resumo:
A straightforward analysis involving Fourier cosine transforms and the theory of Fourier seies is presented for the approximate calculation of the hydrodynamic pressure exerted on the vertical upstream face of a dam due to constant earthquake ground acceleration. The analysis uses the “Parseval relation” on the Fourier coefficients of square integrable functions, and directly brings out the mathematical nature of the approximate theory involved.
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
Pressure transitions of Se-Te alloys have been studied over the entire range of compositions. Conductivities have also been measured as a function of temperature and alloy composition. Transition pressures, activation barriers and isothermal conductivities exhibit distinct changes of slope in their variation as a function of composition at about 8 at % of Te. Transition pressures change slope at not, vert, similar 35% Te also. An attempt has been made to explain these observations on the basis of the size effect of Te which, in turn, affects the electron energy dispersions in the band structure.
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.