846 resultados para predator-prey
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.
Resumo:
The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Combining the results of behavioral, neuronal immediate early gene activation, lesion and neuroanatomical experiments, we have presently investigated the role of the superior colliculus (SC) in predatory hunting. First, we have shown that insect hunting is associated with a characteristic large increase in Fos expression in the lateral part of the intermediate gray layer of the SC (Wig). Next, we have shown that animals with bilateral NMDA lesions of the lateral parts of the SC presented a significant delay in starting to chase the prey and longer periods engaged in other activities than predatory hunting. They also showed a clear deficit to orient themselves toward the moving prey and lost the stereotyped sequence of actions seen for capturing, holding and killing the prey. Our Phaseolus vulgaris-leucoagglutinin analysis revealed that the lateral SCig, besides providing the well-documented descending crossed pathway to premotor sites in brainstem and spinal cord, projects to a number of midbrain and diencephalic sites likely to influence key functions in the context of the predatory behavior, such as general levels of arousal, motivational level to hunt or forage, behavioral planning, appropriate selection of the basal ganglia motor plan to hunt, and motor output of the primary motor cortex. In contrast to the lateral SC lesions, medial SC lesions produced a small deficit in predatory hunting, and compared to what we have seen for the lateral SCig, the medial SCig has a very limited set of projections to thalamic sites related to the control of motor planning or motor output, and provides conspicuous inputs to brainstem sites involved in organizing a wide range of anti-predatory defensive responses. Overall, the present results served to clarify how the different functional domains in the SC may mediate the decision to pursue and hunt a prey or escape from a predator. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Among lampyrids, intraspecific sexual communication is facilitated by spectral correspondence between visual sensitivity and bioluminescence emission from the single lantern in the tail. Could a similar strategy be utilized by the elaterids (click beetles), which have one ventral abdominal and two dorsal prothoracic lanterns? Spectral sensitivity [S(lambda)] and bioluminescence were investigated in four Brazilian click beetle species Fulgeochlizus bruchii, Pyrearinus termitilluminans, Pyrophorus punctatissimus and P. divergens, representing three genera. In addition, in situ microspectrophotometric absorption spectra were obtained for visual and screening pigments in P. punctatissimus and P. divergens species. In all species, the electroretinographic S(lambda) functions showed broad peaks in the green with a shoulder in the near-ultraviolet, suggesting the presence of short- and long-wavelength receptors in the compound eyes. The long-wavelength receptor in Pyrophorus species is mediated by a P540 rhodopsin in conjunction with a species-specific screening pigment. A correspondence was found between green to yellow bioluminescence emissions and its broad S(lambda) maximum in each of the four species. It is hypothesized that in elaterids, bioluminescence of the abdominal lantern is an optical signal for intraspecifc sexual communication, while the signals from the prothoracic lanterns serve to warn predators and may also provide illumination in flight.
Resumo:
Uma análise de dados publicados sobre dietas de aves marinhas oceânicas mostra a predominância de cefalópodes musculares e de distribuição mais superficial nas camadas oceânicas, mas também são importantes as espécies gelatinosas e amoniacais restritas a camadas abaixo dos 300 m da superfície. A princípio, não deveria se esperar que cefalópodes de profundidade fossem considerados presas comuns de aves marinhas oceânicas como reportados por muitos autores. É proposto neste estudo que uma fonte indireta, importante e de fácil obtenção, surgiu com o início das atividades dos barcos atuneiros que operam com espinhel. O hábito de ingerir restos de vísceras de peixes capturados em barcos espinheleiros pode explicar as prováveis conclusões equivocadas de que cefalópodes de profundidade são presas naturais de aves marinhas oceânicas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Evania appendigaster is a cosmopolitan wasp that deposits eggs in the oothecae of some species of cockroaches; its larvae then consume the cockroach eggs and embryos. It is a candidate for the biological control of cockroaches, but little is known about its basic biology. Here we describe the external morphology of all immature stages of E. appendigaster and compare them with the larvae of related species. The life cycle of E. appendigaster includes three larval instars, each with 13 body segments. Their mouthparts were generally reduced, except for the mandibles, which were always sclerotized and toothed, and were especially robust in second-instar larvae. Antennal and mouthpart sensilla were basiconic and difficult to observe. Larvae of E. appendigaster are similar in form to other described evaniid larvae, but quite different from the two available descriptions of larvae of gasteruptiid and aulacid wasps. Further descriptions of evaniid larvae will be useful in determining how widespread this morphology is within the family, and in understanding phylogenetic relationships within Hymenoptera.
Resumo:
As vespas sociais são predadoras de muitas espécies de insetos e o estudo de suas presas pode revelar seu potencial para programas de controle biológico de pragas. Foram realizadas 240h de coleta de presas em 32 colônias de Polistes versicolor (Olivier) no município de Juiz de Fora, MG, de março de 2000 a fevereiro de 2001. As presas capturadas por P. versicolor foram, principalmente, das ordens Lepidoptera (95,4%) e Coleoptera (1,1%) além de 3,4% de indivíduos não identificados. A espécie mais coletada foi Chlosyne lacinia saundersii Doubleday & Hewitson (13,5%) (Lepidoptera: Nymphalidae) e o número total estimado de presas capturadas por colônia de P. versicolor foi de 4.015 indivíduos por ano. Isso mostra que a espécie pode ser utilizada em programas de manejo integrado de pragas de insetos herbívoros, principalmente lagartas desfolhadoras.
Resumo:
The Nile tilapia, Oreochromis niloticus, is an important omnivorous fish in the reservoirs of the semi-arid region of Brazil. Throughout its growth tilapia s feeding behavior changes from a visual predator of zooplankton to a filter-feeder, collecting suspended particulate matter, including planktonic organisms, through pumping. This feature results in different impacts of tilapia on plankton community as the fish grows. Aiming to quantify the functional response of different sizes of Nile tilapia on zooplankton experiments in microcosms scale in the laboratory and in mesocosm scale in the field were carried out. The data were fitted to four different models of functional response. The best fits were obtained for nonlinear models in laboratory experiments. While the experiments in mesocosms were the best settings for responses of type I (juvenile and adult tilapia) and type III (fry). The Manly's alpha index was used to evaluate the feeding selectivity of tilapia on the three main groups of the zooplankton in the experiments in mesocosms. The results show that: (i) rotifers were the preferred prey of fingerlings,(ii) copepods were rejected by fry and juvenile tilapia and (iii) adult fish fed non-selectively on copepods, cladocerans and rotifers. The functional response models obtained in this research can be applied to population models and help in modeling the dynamics of interactions between Nile tilapia and the planktonic communities in the reservoirs of the semi-arid