920 resultados para power systems
Resumo:
A power generation scheme based on bare electrodynamic tethers (EDT), working in passive mode is investigated for the purpose of supplying power to scientific missions at Saturn. The system employs a spinning EDT on a lowaltitude polar orbit which permits to efficiently convert plasmasphere energy into useful power. After optimizing the tether design for power generation we compute the supplied power along the orbit and the impact of the Lorentz force on the orbital elements as function of the tether and orbit characteristics. Although uncertainties in the current ionosphere density modeling strongly affect the performance of the system the peak power density of the EDT appears be greater than conventional power systems.
Resumo:
Electrical power systems are changing their traditional structure, which was based on a little number of large generating power plants placed at great distances from loads by new models that tend to split the big production nodes in many smaller ones. The set of small groups which are located close to consumers and provide safe and quality energy is called distributed generation (DG). The proximity of the sources to the loads reduces losses associated with transportation and increases overall system efficiency. DG also favors the inclusion of renewable energy sources in isolated electrical systems or remote microgrids, because they can be installed where the natural resource is located. In both cases, as weak grids unable to get help from other nearby networks, it is essential to ensure appropriate behavior of DG sources to guarantee power system safety and stability. The grid codes sets out the technical requirements to be fulfilled for the sources connected in these electrical networks. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated electrical systems and this happens due to the difficulties inherent in the pursuit of codes. Some countries have developed their own legislation only for their island territory (as Spain or France), others apply the same set of rules as in mainland, another group of island countries have elaborated a complete grid code for all generating sources and some others lack specific regulation. This paper aims to make a complete review of the state of the art in grid codes applicable to isolated systems, setting the comparison between them and defining the guidelines predictably followed by the upcoming regulations in these particular systems.
Resumo:
El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.
Resumo:
This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales. It is a prospective study, where the scope is to describe the characteristics of current power systems (like the generation technologies, load curves and grid constraints), and define future scenarios of hydrogen for balancing the electrical grids, considering the efficiency, economy and easiness of operations. We focus in the "Spanish case", which is a good example for planning the transition from a power system holding large reserve capacities, high penetration of renewable energies and limited interconnections, to a more sustainable energy system being capable to optimize the volumes, the regulation modes, the utilization ratios and the impacts of the installations. Thus, we explore a novel aspect of the "hydrogen economy" which is based in the potentials of existing power systems and the properties of hydrogen as energy carrier, by considering the electricity generation and demand globally and determining the optimal size and operation of the hydrogen production processes along the country; e.g. the cost production of hydrogen becomes viable for a base-load scenario with 58 TWh/year of power surplus at 0.025 V/kWh, and large number electrolyzer plants (50 MW) running in variable mode (1-12 kA/m2)
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Vol. 1: "DOE/ERA-0056/1"; v. 2: "DOE/ERA-0056-2."
Resumo:
Report year ends Sept. 30.
Resumo:
"Prepared for Office of Nuclear Power Systems, Assistant Secretary for Nuclear Energy, U.S. Department of Energy and the Institute of Nuclear Power Operations."
Resumo:
Chiefly tables.
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.
Resumo:
Grid computing is an emerging technology for providing the high performance computing capability and collaboration mechanism for solving the collaborated and complex problems while using the existing resources. In this paper, a grid computing based framework is proposed for the probabilistic based power system reliability and security analysis. The suggested name of this computing grid is Reliability and Security Grid (RSA-Grid). Then the architecture of this grid is presented. A prototype system has been built for further development of grid-based services for power systems reliability and security assessment based on probabilistic techniques, which require high performance computing and large amount of memory. Preliminary results based on prototype of this grid show that RSA-Grid can provide the comprehensive assessment results for real power systems efficiently and economically.
Resumo:
Computer programs have been developed to enable the coordination of fuses and overcurrent relays for radial power systems under estimated fault current conditions. The grading curves for these protection devices can be produced on a graphics terminal and a hard copy can be obtained. Additional programs have also been developed which could be used to assess the validity of relay settings (obtained under the above conditions) when the transient effect is included. Modelling of a current transformer is included because transformer saturation may occur if the fault current is high, and hence the secondary current is distorted. Experiments were carried out to confirm that distorted currents will affect the relay operating time, and it is shown that if the relay current contains only a small percentage of harmonic distortion, the relay operating time is increased. System equations were arranged to enable the model to predict fault currents with a generator transformer incorporated in the system, and also to include the effect of circuit breaker opening, arcing resistance, and earthing resistance. A fictitious field winding was included to enable more accurate prediction of fault currents when the system is operating at both lagging and leading power factors prior to the occurrence of the fault.
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
Rolls-Royce fuel cell systems is developing megawatt scale power systems based on solid oxide fuel cell technology. The hybrid design promises to meet challenging energy efficiency, cost and performance targets in a grid friendly fashion. Analysis and testing to date indicate that those targets can be met and enable a wealth of fuel cell applications to meet customer and existing grid and modern grid requirements. Working with a global development team, a series of laboratory tests and evaluations are completed and future field test and evaluation and demonstration planned.