970 resultados para platelet derived endothelial cell growth factor
Resumo:
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.
Resumo:
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
Regulation of cell growth, death, and polarization by ERBB4 ErbB4 is a member of the epidermal growth factor receptor (EGFR, ErbB) family. The other members are EGFR, ErbB2 and ErbB3. ErbB receptors are important regulators for example in cardiovascular, neural and breast development but control key cellular functions also in many adult tissues. Abnormal ErbB signaling has been shown to be involved in various illnesses such as cancers and heart diseases. Among the ErbBs, ErbB4 has been shown to have unique signaling characteristics. ErbB4 exists in four alternatively spliced isoforms that are expressed in a tissue-specific manner. Two of the isoforms can be cleaved by membrane proteases, resulting in release of soluble intracellular domains (ICD). Once released into the cytosol, the ICD is capable of translocating into the nucleus and participating in regulation of transcription. The functional differences and the tissue-specific expression patterns suggest isoformspecific roles for ErbB4 isoforms. However, the abilities of ErbB4 isoforms to differently regulate cellular functions were discovered only recently and are not well understood. This study aimed to determine the expression patterns of ErbB4 in normal and diseased tissue, and to define whether the cleavable and non-cleavable isoforms could regulate different target genes and therefore, cellular functions. In this study, a comprehensive ErbB4 expression pattern in several normal tissues, various cancers and non-neoplastic diseases was determined. In addition, the data demonstrated that the cleavable and non-cleavable ErbB4 isoforms could regulate different cellular functions and target genes. Finally, this study defined the cellular responses regulated by ErbB4 during kidney development.
Resumo:
The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
Transforming growth factor-β1 (TGF-β1) plays an important role in the fibrogenic process in the liver. The aim of the present study was to explore the action of TGF-β1 on fibronectin expression in rat hepatic stem-like cells and the underlying mechanisms. The level of fibronectin expression was determined in hepatic stem-like cells (WB cells) before and after TGF-β1 stimulation by RT-PCR and Western blot methods. Using immunogold transmission electron microscopy and the Western blot method, we observed the result of the expression and the distribution of cAMP, phosphorylated Smad3 and Smad7 before and after TGF-β1 treatment. The levels of fibronectin expression in both mRNA and protein increased 4- to 5-fold after TGF-β1 stimulation, reaching an optimum level after 8 h and then gradually falling back. Similarly, TGF-β1 stimulation resulted in an increase of cAMP in WB cells, peaking at 8 h. After treatment with TGF-β1 for 24 h, the expression of cAMP gradually decreased. In addition, we found that TGF-β1 treatment also contributed to the increased expression and to changes in cellular distribution of phosphorylated Smad3 (translocation from the cytoplasm to the nucleus) and Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. The present study demonstrates that TGF-β is involved in the fibrogenic process in hepatic stem cells through up-regulation of fibronectin expression, and the mechanisms underlying this process may be associated with the activation of cAMP and Smad pathways.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [³H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.
Resumo:
Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.
Resumo:
Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.
Resumo:
Chicl( brain growth factor (CBGF) is a mitogen isolated from embryonic chick brains thought to have a potential role as a trophic factor involved in nerve dependent amphibian limb regeneration. In addition, CBGF stimulates 3H-thymidine incorporation in chick embryo brain astrocytes in vitro. In this study, cultured chick embryo brain non-neuronal cells were employed in a bioassay to monitor CBGF activity throughout various stages of its pllrification. Cell culture and assay conditions were optimized. Nonneuronal cells grew best on collagen-coated culture dishes in complete medium, were most responsive to a growth stimulus [10% fetal bovine serum (FBS)] at the second and third subcultures, and were healthiest when rendered "quiescent" in medium supplemented with 1% FBS. The most effective bioassay conditions consisted of a minimum 14.5 hour "quiescence" time (24 hours was used), a 6 hour "prestimulation" time, and a 24 hour 3H-thymidine labeling time. Four-day subconfluent primary non-neuronal cells consisted of 6.63% GFAP positive cells; as a result cultures were thought to be mainly composed of astroblasts. CBGF was purified from 18-day chick embryo brains by ultrafiltration through Amicon PM-30 and YM-2 membranes, size exclusion chromatography through a Biogel P6 column, and analytical reverse-phase high-performance liquid chromatography (rp-HPLC). The greatest activity resided in rp-HPLC fraction #7 (10 ng/ml) which was as effective as 10% FBS at stimulating 3H-thymidine incorporation in chick embryo brain nonneuronal cells. Although other researchers report the isolation of a mitogenic fraction consisting of 5'-GMP from the embryonic chick brain, UV absorbance spectra, rp-HPLC elution profiles, and fast atom bombardment (FAB) mass spectra indicated that CBGF is neither 5'-GMP nor 51-AMP. 2 Moreover, commercially available 5t-GMP was inhibitory to 3H-thymidine incorporation in the chick non-neuronal cells, while Sf-AMP had no effect. Upon treatment with pronase, the biological activity of fraction P6-3 increased; this increase was nearly 30% greater than what would be expected from a simple additive effect of any mitogenic activity of pronase alone together with P6-3 alone. This may suggest the presence of an inhibitor protein. The bioactive component may be a protein protected by a nucleoside/nucleotide or simply a nucleoside/nucleotide acting alone. While the FAB mass spectrum of rp-HPLC fraction #7 did not reveal molecular weight or sequence information, the ion of highest molecular weight was observed at m/z 1610; this is consistent with previous estimations of CBGF's size. 3
Resumo:
La signalisation par l’estrogène a longtemps été considérée comme jouant un rôle critique dans le développement et la progression des cancers hormono-dépendants tel que le cancer du sein. Deux tiers des cancers du sein expriment le récepteur des estrogènes (ER) qui constitue un élément indiscutable dans cette pathologie. L’acquisition d’une résistance endocrinienne est cependant un obstacle majeur au traitement de cette forme de cancer. L’émergence de cancers hormono-indépendants peut est produite par l’activation de ER en absence d’estrogène, l’hypersensibilité du récepteur aux faibles concentrations plasmique d’estrogène ainsi que l’activation de ER par des modulateurs sélectifs. L’activité du ER est fortement influencée par l’environnement cellulaire tel que l’activation de voie de signalisation des facteurs de croissances, la disponibilité de protéines co-régulatrices et des séquences promotrices ciblées. Présentement, les études ont principalement considérées le rôle de ERα, cependant avec la découverte de ERβ, notre compréhension de la diversité des mécanismes potentiels impliquant des réponses ER-dépendantes s’est améliorée. L’activation des voies des kinases par les facteurs de croissance entraîne le développement d’un phénotype tumoral résistant aux traitements actuels. Nos connaissances des voies impliquées dans l’activation de ER sont restreintes. ERα est considéré comme le sous-type dominant et corrèle avec la plupart des facteurs de pronostic dans le cancer du sein. Le rôle de ERβ reste imprécis. Les résultats présentés dans cette thèse ont pour objectif de mieux comprendre l’implication de ERβ dans la prolifération cellulaire par l’étude du comportement de ERβ et ERα suite à l’activation des voies de signalisation par les facteurs de croissance. Nous démontrons que l’activation des récepteurs de surfaces de la famille ErbB, spécifiquement ErbB2/ErbB3, inhibe l’activité transcriptionnelle de ERβ, malgré la présence du coactivateur CBP, tout en activant ERα. De plus, l’inhibition de ERβ est attribuée à un résidu sérine (Ser-255) situé dans la région charnière, absente dans ERα. Des études supplémentaires de ErbB2/ErbB3 ont révélé qu’ils activent la voie PI3K/Akt ciblant à son tour la Ser-255. En effet, cette phosphorylation de ERβ par PI3K/Akt induit une augmentation de l’ubiquitination du récepteur qui promeut sa dégradation par le système ubiquitine-protéasome. Cette dégradation est spécifique pour ERβ. De façon intéressante, la dégradation par le protéasome requiert la présence du coactivateur CBP normalement requis pour l’activité transcriptionnelle des récepteurs nucléaires. Malgré le fait que l’activation de la voie PI3K/Akt corrèle avec une diminution de l’expression des gènes sous le contrôle de ERβ, on observe une augmentation de la prolifération des cellules cancéreuses. L’inhibition de la dégradation de ERβ réduit cette prolifération excessive causée par le traitement avec Hrgβ1, un ligand de ErbB3. Un nombre croissant d’évidences indique que les voies de signalisations des facteurs de croissance peuvent sélectivement réguler l’activité transcriptionnelle de sous-types de ER. De plus, le ratio ERα/ERβ dans les cancers du sein devient un outil de diagnostique populaire afin de déterminer la sévérité d’une tumeur. En conclusion, la caractérisation moléculaire du couplage entre la signalisation des facteurs de croissance et la fonction des ERs permettra le développement de nouveaux traitements afin de limiter l’apparition de cellules tumorales résistantes aux thérapies endocriniennes actuelles.
Resumo:
Les « Facteurs de croissance des fibroblastes» (FGF) agissent comme des régulateurs locaux sur la qualité des follicules et sont connus pour promouvoir la prolifération des cellules de granulosa, réduire l’apoptose et la stéroïdogenèse. Parmi la sous-famille FGF8, FGF18 est une exception puisqu’il semblerait avoir une fonction pro-apoptotique alors que FGF8 n’a pas été jusqu’à présent rapporté comme altérant la viabilité des cellules de la granulosa. Ces deux ligands ont un mode d’activation similaire et il pourrait être proposé que toute la sous-famille FGF8 ait la même réponse. L’objectif de cette étude était de déterminer si FGF8 et FGF18 activaient la même réponse précoce de gènes dans des cultures de granulosa bovine. Pour répondre à cette question, nous avons cultivé des cellules de la granulosa dans du milieu de culture sans sérum pendant 5 jours. Le jour 5, les cellules ont été traitées avec FGF8 ou FGF18. Nous avons eu recours à une approche de « puce à ADN » afin d’identifier la réponse précoce de gènes induite par FGF8 et FGF18, et les données ont été confirmées par des PCRs en temps réel lors d’une expérience in vitro où les cellules de granulosa ont été traitées avec FGF8 et FGF18 pendant différents temps. L’analyse du puce à ADN a identifié 12 gènes surexprimés par FGF8, incluant SPRY2, NR4A1, XIRP1, BAMBI, EGR1, FOS et FOSL1. A l’inverse, FGF18 n’a régulé aucun gène de manière significative. Les analyses de PCR ont confirmé l’augmentation d’ARNm codant pour EGR1, EGR3, FOS, XIRP1, FOSL1, SPRY2, NR4A1 et BAMBI après 2 h de traitement. FGF18 a entrainé seulement une augmentation de l’expression de EGR1 après 2 h de traitement parmi tous les gènes testés. Ces résultats démontrent donc que FGF8 et FGF18, malgré leur similarité dans le mode d’activation de leurs récepteurs, agissent sur les cellules de la granulosa via différentes voies de signalisation. FGF8 et FGF18, sont donc tous les deux capables de stimuler l’expression de EGR1, mais les voies de signalisation induites par la suite divergent.