918 resultados para particle filters
Resumo:
A low-temperature model is described for infrared multilayer filters containing PbTe (or other semiconductor) and ZnSe (or other II/VI). The model is based on dielectric dispersion with semiconductor carrier dispersion added. It predicts an improved performance on cooling such as would be useful to avoid erroneous signals from optics in spaceflight radiometers. Agreement with measurement is obtained over the initial temperature range 70-400K and wavelength range 2.5-20µm.
Resumo:
Chebyshev optical-filter algorithms for low-cost microcomputers have been improved. An offset ripple is now used for better transmission/matching in low-pass stacks. A prototype for narrowband filters is now more general and nearer practicability.
Resumo:
Infrared multilayer interference filters have been used extensively in satellite radiometers for about 15 years. Filters manufactured by the University of Reading have been used in Nimbus 5, 6, and 7, TIROS N, and the Pioneer Venus orbiter. The ability of the filters to withstand the space environment in these applications is critical; if degradation takes place, the effects would range from worsening of signal-to-noise performance to complete system failure. An experiment on the LDEF will enable the filters, for the first time, to be subjected to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms.
Resumo:
Measurement is reported at 4 deg K (and blocked transmission below 10-5) of PbTe/ZnS thin-film filters deposited on Ge substrates. The reduced carrier-absorption which is obtained by cooling these PbTe films is found to accord with simple theory. Advantage for various high-performance multilayers by cooling is significant at the longer wavelengths, and has been verified.
Resumo:
Extrapolation of PbTe/II-VI multilayer interference-filter technique from 20 to beyond 40µm is described and PbTe transparency reviewed; improvements below 20µm are reported. A composite filter cutting on steeply at 40µm is described that uses absorptive films of ZnS and As2S3, thin Quartz, and supplementary multilayer interference. Absorptive filters are described containing the II-VI compounds since these are found transparent at wavelengths shorter and longer than their reststrahl.
Resumo:
Residual stress having been further reduced, selected infrared coatings composed of thin films of (PbTe/ ZnS (or ZnSe) can now be made which comply with the durability requirements of MIL-48616 whilst retaining transparency. Such improved durability is due to the sequence:- i) controlled deposition, followed by ii) immediate exposure to air, followed by iii) annealing in vacuo to relieve stress. (At the time of writing we assume the empiric procedure "exposure to air/annealing in vacuo" acts to relieve the inherent stresses of deposition). As part of their testing, representative sample filters prepared by the procedure are being assembled for the shuttle's 1st Long Duration Exposure Facility (to be placed in earth orbit for a considerable period and then recovered for analysis). The sample filters comprise various narrowband-designs to permit deduction of the constituent thin film optical properties. The Reading assembly also contains representative sample of the infrared crystals, glasses, thin-film absorbers and bulk absorbers, and samples of shorter-wavelength filters prepared similarly but made with Ge/SiO. Findings on durability and transparency after exposure will be reported.
Resumo:
New algorithms and microcomputer-programs for generating original multilayer designs (and printing a spectral graph) from refractive-index input are presented. The programs are characterised TSHEBYSHEV, HERPIN, MULTILAYER-SPECTRUM and have originated new designs of narrow-stopband, non-polarizing edge, and Tshebyshev optical filter. Computation procedure is an exact synthesis (so far that is possible) numerical refinement not having been needed.
Resumo:
The design and manufacture of dielectric-film interference filters for cooled FIR stronmy is described. The bands are 16.5-21.5µm, 17.5-19.5µm, 19.5-21.5µm and 27µm cut on. The films are PbTe/CdSe and the substrates are CdTe (some 1/2 mm thick), without absorption in the region: KRS-6 films are used for antireflection.
Resumo:
This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
Resumo:
The tap-length, or the number of the taps, is an important structural parameter of the linear MMSE adaptive filter. Although the optimum tap-length that balances performance and complexity varies with scenarios, most current adaptive filters fix the tap-length at some compromise value, making them inefficient to implement especially in time-varying scenarios. A novel gradient search based variable tap-length algorithm is proposed, using the concept of the pseudo-fractional tap-length, and it is shown that the new algorithm can converge to the optimum tap-length in the mean. Results of computer simulations are also provided to verify the analysis.
Resumo:
Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be understood quantitatively. In this study, laboratory measurements of the terminal velocity vt for a variety of ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles settling in air, have been analyzed and compared to common methods of computing vt from the literature. It is observed that while these methods work well for a number of particle types, they fail for particles with open geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all overestimated. These particle types are important in many cloud types: aggregates in particular often dominate snow precipitation at the ground and vertically pointing Doppler radar measurements. Based on the laboratory data, a simple modification to previous computational methods is proposed, based on the area ratio. This new method collapses the available drag data onto an approximately universal curve, and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases. Comparison with the (much more scattered) measurements of ice particles falling in air show strong support for this new method, with the area ratio bias apparently eliminated.