926 resultados para palmette tree, pseudo-Kufic motifs
Resumo:
Abstract
Resumo:
This plan was developed to assist Alburnett with the management, budgeting and future planning of their urban forest. Across the state, forestry budgets continue to decrease with more and more of that money spent on tree removal. With the anticipated arrival of Emerald Ash Borer (EAB), an invasive pest that kills native ash trees, it is time to prepare for the increased costs of tree removal and replacement planting. With proper planning and management of the current canopy in Alburnett, these costs can be extended over years and public safety issues from dead and dying ash trees mitigated. Trees are an important component of Alburnett’s infrastructure and one of the greatest assets to the community. The benefits of trees are immense. Trees provide the community with improved air quality, stormwater runoff interception, energy conservation, lower traffic speeds, increased property values, reduced crime, improved mental health and create a desirable place to live, to name just a few benefits. It is essential that these benefits be maintained for the people of Alburnett and future generations through good urban forestry management. Good urban forestry management involves setting goals and developing management strategies to achieve these goals. An essential part of developing management strategies is a comprehensive public tree inventory. The inventory supplies information that will be used for maintenance, removal schedules, tree planting and budgeting. Basing actions on this information will help meet Alburnett’s urban forestry goals.
Resumo:
This plan was developed to assist Avoca with the management, budgeting and future planning of their urban forest. Across the state, forestry budgets continue to decrease with more and more of that money spent on tree removal. With the anticipated arrival of Emerald Ash Borer (EAB), an invasive pest that kills native ash trees, it is time to prepare for the increased costs of tree removal and replacement planting. With proper planning and management of the current canopy in Avoca, these costs can be extended over years and public safety issues from dead and dying ash trees mitigated. Trees are an important component of Avoca’s infrastructure and one of the greatest assets to the community. The benefits of trees are immense. Trees provide the community with improved air quality, stormwater runoff interception, energy conservation, lower traffic speeds, increased property values, reduced crime, improved mental health and create a desirable place to live, to name just a few benefits. It is essential that these benefits be maintained for the people of Avoca and future generations through good urban forestry management. Good urban forestry management involves setting goals and developing management strategies to achieve these goals. An essential part of developing management strategies is a comprehensive public tree inventory. The inventory supplies information that will be used for maintenance, removal schedules, tree planting and budgeting. Basing actions on this information will help meet Avoca’s urban forestry goals.
Resumo:
This plan was developed to assist Belle Plaine with the management, budgeting and future planning of their urban forest. Across the state, forestry budgets continue to decrease with more and more of that money spent on tree removal. With the anticipated arrival of Emerald Ash Borer (EAB), an invasive pest that kills native ash trees, it is time to prepare for the increased costs of tree removal and replacement planting. With proper planning and management of the current canopy in Belle Plaine, these costs can be extended over years and public safety issues from dead and dying ash trees mitigated. Trees are an important component of Belle Plaine’s infrastructure and one of the greatest assets to the community. The benefits of trees are immense. Trees provide the community with improved air quality, stormwater runoff interception, energy conservation, lower traffic speeds, increased property values, reduced crime, improved mental health and create a desirable place to live, to name just a few benefits. It is essential that these benefits be maintained for the people of Belle Plaine and future generations through good urban forestry management. Good urban forestry management involves setting goals and developing management strategies to achieve these goals. An essential part of developing management strategies is a comprehensive public tree inventory. The inventory supplies information that will be used for maintenance, removal schedules, tree planting and budgeting. Basing actions on this information will help meet Belle Plaine’s urban forestry goals.
Resumo:
The objective of this study was to evaluate the mycorrhizal dependency of mangaba tree (Hancornia speciosa) plantlets, under increasing levels of phosphorus fertilization. The experimental design was completely randomized in a 4×5 factorial arrangement with three mycorrhizal fungi inocula - Gigaspora margarita, Glomus etunicatum, or a pool of native mycorrhizal fungi (Acaulospora longula, Glomus clarum, Gigaspora albida, Paraglomus sp.) -, and a nonmycorrhizal control, in combination with five levels of phosphorus applied to the substrate: 0, 25, 50, 75, and 100 mg kg-1. After 180 days of growth, plantlets with inoculation of native mycorrhizal pool produced more shoot and root dry biomass and had higher shoot phosphorus content and accumulation. The noninoculated control showed the lowest values, independently of the phosphorus level. The highest relative mycorrhizal dependency occurred with the inoculation of native mycorrhizal fungi. Plants with mycorrhizal fungi did not respond to phosphorus addition above 50 mg kg-1. Mangaba tree is highly dependent on mycorrhiza, but the degree of dependency varies according to phosphorus levels and fungal inocula. In general, mangaba tree is more responsive to mycorrhizal fungi inoculation than to phosphorus addition.
Resumo:
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
The objective of this work was to estimate the genetic variability and divergence among 22 superior rubber tree (Hevea sp.) genotypes of the IAC 400 series. Univariate and multivariate analyses were performed using eight quantitative traits (descriptors), including yield. In the univariate analyses, the estimated parameters were: genetic and environmental variances; genetic and environmental coefficients of variation; and the variation index. The Mahalanobis generalized distance, the Tocher agglomerative method and canonical variables were used for the multivariate analyses. In the univariate analyses, variability was verified among the genotypes for all the variables evaluated. The Tocher method grouped the genotypes into 11 clusters of dissimilarity. The first four canonical variables explained 87.93% of the cumulative variation. The highest genetic variability was found in rubber yield-related traits, which contributed the most to the genetic divergence. The most divergent pairs of genotypes are suggested for crossbreeding. The genotypes evaluated are suitable for breeding and may be used to continue the IAC rubber tree breeding program.
Resumo:
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i
Resumo:
University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Resource Management