978 resultados para ornamental fishes
Freshwater fishes distribution in Taiwan and continent of China and its biogeographical significance
Resumo:
Through the comparative analysis of primary freshwater fishes in Chinese continent and the Taiwan Island, we summarize the three distinctions of distribution of freshwater fishes in these areas: (i) there exists a high similarity of freshwater fish fauna between Taiwan and the southeastern shore of the continent; (ii) some species of freshwater fish are found both in the Taiwan Island and East Himalayans; (iii) different freshwater fishes have different distributions in island arch of western Pacific where Taiwan is located, but the distribution pattern shows a similarity to that of adjacent continent. The characteristic distributions of the fishes are closely related to the change in paleogeography and geology in the area. The parsimony analysis of endemicity (PAE analysis) indicates that the three distribution patterns can be explained by the vicariance theory.
Resumo:
1140 bp of cytochrome b gene were amplified and sequenced from 14 species of primitive cyprinid fishes in East Asia. Aligned with other ten cytochrome b gene sequences of cyprinid fish from Europe and North America retrieved from Gene bank, we obtained a matrix of 24 DNA sequences. A cladogram was generated by the method of Maximum likelihood for the primitive cyprinid fishes. The result indicated that subfamily Leuciscinae and Danioninae do not form a monophyletic group. In the subfamily Danioninae, Opsariichthys biden and Zacco platypus are very primitive and form a natural group and located at the root. But the genera in subfamily Danioninae are included in different groups and have not direct relationship. Among them, Aphyocypris chinensis and Yaoshanicus arcus form a monophyletic group. Tanichthys albonubes and Gobiocypris rarus have a close relation to Gobioninae. The genus Danio is far from other genera in Danioninae, In our cladogram, the genera in Leuciscinae were divided into two groups that have no direct relationship. The genera in Leuciscinae distributed in Europe, Sibera and North America, including Leuciscus, Rutilus, Phoxinus, N. crysole, Opsopoeodus emilae, form a monophyletic group. And the Leuciscinae in southern China including Ctenopharyngodon idellus, Mylopharyngodon piceus, Squalibarbus and Ochetobius elongatus have a common origination.
Resumo:
Feeding ecology of three small fish species, Hypseleotris swinhonis, Ctenogobius giurinus and Pseudorasbora parva was studied seasonally in the Biandantang Lake, a small, shallow lake in central China. Gut length, adjusted for total body length, was significantly higher in spring than in other seasons for all the three species. Seasonal changes in gut length were not associated with changes in food quality. Weight of fore-gut contents, adjusted for body weight, was significantly higher in winter and spring than in summer and autumn in H. swinhonis and C. giurinus, and significantly higher in autumn than in spring and summer for P. parva. Percentage of empty fore-guts was highest in summer and lowest in spring for I-I. swinhonis and C. giurinus, and highest in winter and lowest in autumn for P. parva. Diet of the three small fishes showed apparent seasonal changes, and these changes reflected partly the seasonal fluctuations of food resources in environment. Diet breadth was high in winter and low in autumn for H. swinhonis, high in winter and low in spring and summer for C. giurinus, and high in autumn and low in spring for P. parva. Diet overlaps between pairs of species were biologically significant in most cases, except between H. swinhonis and P. parva in summer and autumn and between C. giurinus and P. parva in autumn. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
The changes of L. kindti density from 1957 to 1996 were studied in a shallow, eutrophic Chinese lake, Lake Donghu. Despite the fact that the fish yield of planktivorous fish (silver carp and bighead carp) has increased steadily, the population density of L. kindti has also increased since 1957 and peaked in 1982/1983, The increase of both fish and L. kindti densities during this period may have benefitted from a considerable increase in the densities of their zooplankton prey. and fish predation on L. kindti might have been minor. As the fish yield increased further, their predation began to suppress most zooplankton prey including L. kindti. The largely increased fish predation on L. kindti is also evidenced by the remarkable decline of their body length after 1984. The density of L. kindti was significantly higher at the pelagic station (II) than at the littoral station (I), although for L. kindti, the littoral zone was significantly more resource profitable than the pelagic zone. The gradient of fish predation (more fish in the littoral zone) is the most likely explanation, since L. kindti is reported to be a preferred prey for many planktivorous fishes. The maximum density of L. kindti was 1.78 ind./I (on Aug. 17, 1984) at Station I and 1.55 ind./I (on Sep. 13, 1985) at Station II, respectively, which are close to those in several other eutrophic lakes.
Resumo:
Rates of maximum food consumption and growth were determined for immature mandarin fish Siniperca chuatsi (47.2-540.2 g) and Chinese snakehead Channa argus (45.0-546.2 g) at 10, 15, 20, 25, 30 and 35 degrees C. The relationship between maximum rate of food consumption (C-max), body weight (W) and temperature (T) was described by the multiple regression equations: lnC(max) = -4.880 + 0.597 lnW+0.284T - 0.0048T(2) for the mandarin fish, and lnC(max)= -6.718 + 0.522 lnW+0.440T-0.0077T(2) for the Chinese snakehead. The optimum temperature for consumption was 29.6 degrees C for the mandarin fish and 28.6 degrees C for the Chinese snakehead. The relationship between growth rate (G), body weight and temperature was ln(G+0.25)= - 0.439 - 0.500 lnW+0.270T - 0.0046T(2) for the mandarin fish, and ln(G+0.25)= - 6.150+ (0.175 - 0.026T) lnW+0.571T - 0.0078T(2) for the Chinese snakehead. The weight exponent in the growth-weight relationship was -0.83 for the mandarin fish, but decreased with increasing temperature for the Chinese snakehead. The optimum temperature for growth was 29.3 degrees C for the mandarin fish, but tended to decrease with increasing weight for the Chinese snakehead, being 30.3 degrees C for a 45-g fish, and 26.1 degrees C for a 550-g fish. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
鰋鮡鱼类共包括9 属43 种(亚种),隶属于鲇形目(Siluriformes)鮡科 (Sisoridae)鰋鮡亚科(Glyptosternae)中鰋鮡族(Tribe Glyptosternini)的鰋鮡 亚族(Subtribe Glyptosternina)。鰋鮡鱼类形态上的共同特征为:无胸吸着器,胸、 腹鳍水平展开,第一根鳍条完全分节或在外缘生出许多软骨细条,被外表皮所裹, 在腹面看到的是许多与分节或软骨细条大致对应的横纹皱褶。鰋鮡鱼类集中分布 于青藏高原周边的水系中,部分属种向西分布到了中亚地区的阿姆河上游,是适 应山区急流环境的一群鱼类。近年来一系列的研究表明,鰋鮡鱼类为一单系类群, 它的起源和演化与青藏高原的隆升有着直接的关系。鰋鮡鱼类的系统发育研究, 可以为青藏高原隆升的年代、幅度和形式提供间接的证据,其系统发育树的拓扑 结构也直接反映了东喜马拉雅地区诸水系的形成与演变。 本研究对鰋鮡鱼类9 属进行了系统整理。1. 发现并描述了异齿鰋属 (Oreoglanis)两新种,分别为分布于景东无量山(澜沧江水系)的景东异齿鰋 (O. jingdongensis)和分布于怒江水系南景河和南滚河的无斑异齿鰋(O. immaculatus)。认为分布于中国的异齿鰋属鱼类均属于尖须异齿鰋种组(O. siamensis species group)。指出区分异齿鰋属两个种组:尖须异齿鰋种组和细尾 异齿鰋种组(O. delacouri species group)的特征是下唇中部是否具有中央缺刻, 尾型的差别(新月型尾或凹型尾)不能用来区分两个种组,给出了异齿鰋属的检 索表,并绘制了异齿鰋属鱼类分布图。2. 对鮡属(Pareuchiloglanis)鱼类进行了 系统整理,通过外部形态度量性状的比较,认为分布于澜沧江水系的,曾经被鉴 定为扁头鮡(P. kamengensis)的标本,应属于大鳍鮡(P. macropterus),扁头鮡 和大鳍鮡之间的最明显的差别在于腹鳍前长的不同。前者的腹鳍前长为体长的 53.2-64.9%,后者的腹鳍前长均不达体长的50%。3. 通过比较金沙江水系分布的 5 种鮡属鱼类,中华鮡(P. sinensis)、前臀鮡(P. anteanalis)、壮体鮡(P. robusta)、 四川鮡(P. sichuanensis)和天全鮡(P. tianquanensis),认为天全鮡和四川鮡之 间分布水系重叠,外部形态亦无差别,天全鮡很可能为四川鮡的同物异名。给出 了鮡属鱼类的系统检索表,并绘制了鮡属鱼类分布图。利用分子系统学的原理和方法对鰋鮡鱼类进行系统发育研究。测定了6 属 15 种鰋鮡鱼类和鮡科中非鰋鮡鱼类4 属7 种共28 个体的线粒体Cyt b 基因部分 片段和全序列(1138 bp),结合从GenBank 下载的相关类群相同的基因序列,以 魾属(Bagarius)的巨魾(B. yarrelli),纹胸鮡属(Glyptothorax)的穴形纹胸鮡 (G. cavia)、亮背纹胸鮡(G. dorsalis)、扎那纹胸鮡(G. zainaensis),福建纹胸 鮡(G. fukiensis fukiensis)、海南纹胸鮡(G. fukiensis hainanensis),黑鮡属(Gagata) 的长丝黑鮡(G. dolichonema)以及褶鮡属(Pseudecheneis)的黄斑褶鮡(P. sulcatus) 和无斑褶鮡(P. immaculatus)作为外类群,采用贝叶斯法(Bayesian)、最简约 法(maximum pasimony, MP)和邻接法(neighbour-joining, NJ)构建系统发育树。 结果显示: 1. 鰋鮡鱼类为一单系类群,并且与褶鮡属互为姐妹群关系; 2. 原鮡属、鰋属和凿齿鮡属是鰋鮡鱼类的三个基部类群; 3. 异齿鰋属构成为一个单系群,大鳍异齿鰋最早从该属的基部分化出来; 4. 石爬鮡属构成一个单系,并与分布于金沙江水系的中华鮡+前臀鮡构成姐妹 群,黄石爬鮡和青石爬鮡的单倍型相互交错;显示两个物种的分类是不合适的, 而是同一水系不同支流种群之间梯度变异的例子,依据本次研究所得出的三个分 支图,结合青石爬鮡自西至东分布于金沙江、雅砻江、大渡河、青衣江、岷江等 的分布格局以及形态特征的分布,显示形态特征的分布变化有以下趋势:自西至 东,腹鳍位置逐渐前移;颌须渐趋缩短;胸鳍趋向发达、伸达腹鳍起点。这些变 化趋势是同一水系不同支流种群之间梯度变异的极好例子; 5. 分布于澜沧江以西(包括澜沧江)水系的鮡属鱼类(扁头鮡、细尾鮡、短鳍 鮡)与分布于怒江和伊洛瓦底江水系的拟鰋属鱼类构成为一支,并且二者共同与 分布于元江上游(红河水系)的大孔鮡构成为单系。其中,短体拟鰋和拟鰋互为 姐妹种;而扁头鮡和短鳍鮡也互为姐妹种;细尾鮡的系统地位则尚不能确定; 6. 无论在MP 树、贝叶斯树还是NJ 树中,石爬鮡属、鮡属、拟鰋属和异齿鰋属 构成一个单系,并且支持率达到了100%。 7. 鰋属位于鰋鮡鱼类的基部,是较早就从鰋鮡鱼类祖先中演化出来的一个类群, 鰋类的口吸盘是一个趋同性状,是在急流环境条件下形成的一种适应性性状,在 鰋类各属中不是同源特征; 8. 鮡属鱼类不是一个单系类群,分布于金沙江流域的鮡属鱼类与同流域分布的石爬鮡属鱼类聚成一支;澜沧江及其以西水系分布的鮡属鱼类与同流域分布的拟 鰋属鱼类聚成一支,之后这两支又同异齿鰋属共同构成为一个大支。 结合鰋鮡鱼类的系统发育分支图对其动物地理学进行研究。鰋鮡鱼类是由类 似纹胸鮡属(Glyptothorax)鱼类的祖先演化而来,鰋属(Exostoma)和凿齿鮡 属(Glaridoglanis)是较早就从从类似原鮡的祖先中演化出来,鮡属、石爬鮡属、 拟鰋属和异齿鰋属这一大支由类似原鮡的祖先演化而来。在青藏高原强烈隆起等 重大地理隔离事件发生之前,类似于现生的原鮡属鱼类已经广布喜马拉雅山脉东 西两侧。在青藏高原强烈隆起等重大地理隔离事件发生后,鰋鮡鱼类在相同的地 理隔离下独自演化为现在的分布格局。
Resumo:
Species in Liangzi Lake were clustered into four trophic groups: Hemiramphus kurumeus and Hemiculter bleekeri bleekeri fed predominantly on terrestrial insects; Carassius auratus auratus and Abbottina rivularis on non-animal food; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva and Toxabramis swinhonis on cladocerans or copepods; Culterichthys erythropterus on decapod shrimps. Gut length, mouth width, mouth height, gill raker length and gill raker spacing, varied widely among species. With the exception of three species pairs (H. swinhonis, C. glurinus; C. erythropterus, H. kurumeus; T. swinhonis, H. bleekeri bleekeri), principal components analysis of morphological variables revealed over-dispersion of species. Canonical correspondence analysis of dietary and morphological data revealed five significant dietary-morphological correlations. The first three roots explained > 85% of the total variance. The first root reflected mainly the relationship of gut length to non-animal feud, with an increase in gut length associated with an increase in non-animal food. The second root was influenced strongly by the relationship of the gill raker spacing to consumption of copepods, with an increase in gill raker spacing associated positively with copepods in the diet. The third root was influenced by the relationship of mouth gape to consumption of fish and decapod shrimps, with an increase in mouth gape associated with more fish and decapod shrimps in the diet. These significant dietary-morphological relationships supported the eco-morphological hypotheses that fish morphology influence food use, and morphological variation is important in determining ecological segregation of co-existing fish species. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
The complete mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) was sequenced in Herzenstein macrocephalus and Gymnocypris namensis and in 13 other species and sub-species (n = 22), representing four closely related genera in the subfamily Schizothoracinae. Conflicting taxonomies of H. macrocephalus and G. namensis have been proposed because of the character instability among individuals. Parsimony, maximum likelihood and Bayesian methods produced phylogenetic trees with the same topology and resolved several distinctive clades. Previous taxonomic treatments, which variously placed these two species of separate genera or as sub-species, are inconsistent with the mtDNA phylogeny. Both H. macrocephalus and G. namensis appear in a well-supported clade, which also includes nine species of Schizopygopsis, and hence should be transferred to the genus Schizopygopsis. Morphological changes are further illustrated, and their adaptive evolution in response to the local habitat shifts during the speciation process appears to be responsible for conflicting views on the systematics of these two species and hence the contrasting taxonomic treatments. These species are endemic to the Qinghai-Tibetan Plateau, a region with a history of geological activity and a rich diversity of habitats that may have result in the parallel and reversal evolution of some morphological characters used in their taxonomies. Our results further suggest that speciation and morphological evolution of fishes in this region may be more complex than those previously expected. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.
Resumo:
A Embrapa Mandioca e Fruticultura Tropical iniciou em principios dos anos 80 um Banco de Gemoplasma tendo reunido atualmente um total de quase 700 acessos no campo, do gênero Ananas e outras bromeliáceas, sendo uma das maiores coleções de gemoplasma desse gênero no mundo, reunindo expressiva variabilidade genética intra e interespecífica. A coleção está em condições de campo e uma duplicata vem sendo introduzida na conservação in vitro desde 2003, como cópia de segurança. A variabilidade genética do gênero Ananas, no entanto, é ainda muito pouco explorada, apesar do potencial que essas plantas têm para a geração de diversos produtos. Os genótipos silvestres possuem uma diversidade de formas e cores, que chamam atenção pela beleza e exoticidade. Essas características conferem a essas plantas um grande potencial para serem usadas como planta omamental. O abacaxi já vem se destacando como fruteira omamental, representando, atualmente, o segundo produto mais exportado da floricultura do Ceará. Essa comercialização, no entanto, está pautada em apenas duas cultivares, o Ananas comosus var. erectifolius (=Lucidus) e o Ananas comosus var. bracteatus (=Ananas Porteanus).
Resumo:
El mercado de plantas ornamentales tropicales ha mostrado un crecimiento expresivo y la búsqueda por novedades es constante. Actualmente hay pocas variedades de bananos ornamentales disponibles para comercialización, y en su mayoría constituyen el uso directo de especies de las secciones Rhodoclamys (M. ornata y M. velutina) y Callimusa (M. coccinea). La generación de nuevas variedades de banano ornamental para diferentes usos constituye una alternativa para satisfacer esta demanda. La Embrapa Yuca y Frutales mantiene un banco de germoplasma de Musa spp. con 290 accesiones, que contemplan variedades y especies silvestres de la sección Eumusa, con un predominio de M. acuminata y M. balbisiana, con diferentes grados de ploidia y combinaciones de los genomas A y B. La colección también alberga representantes de las secciones Rhodochlamys y Callimusa. Tradicionalmente el uso de este germoplasma estaba direccionado sólo a la producción de cultivares para la alimentación, y ha generado varios cultivares productivos, con frutos de buena calidad y resistentes al mal de Panamá, Sigatoka amarilla y Sigatoka negra.
Resumo:
p.1-7
Resumo:
p.1-7