943 resultados para nutrient retranslocation
Resumo:
Dendrobium nobile orchids were grown for three years in different substrates (tree fern fiber, blocks of pressed coconut bark, bark of Eucalyptus grandis, mixtures with coconut bark blocks and eucalyptus bark and mixtures with the latter materials and charcoal. Plant growth increased with higher concentrations of S (up to 1.6 g/kg), Cu (up to 46 mg/kg) and Zn (up to 147 mg/kg), and decreased with higher concentrations of Ca (up to 13.2 g/kg), Mg (up to 6.6 g/kg) and B (up to 19 mg/kg). High Mo (up to 5.3 mg/kg) caused a more intense loss of leaves after planting. Relations between nutrient concentrations also affected plant growth. With exception of eucalyptus bark, all growing media under study were suitable for plant growth.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In order to evaluate growth characteristics, adaptability, biomass production, nutrient recycling, nutrient distribution and the ability to regenerate degraded land, a trial using four multipurpose tree species (Leucaena leucocephala, Leucaena diversifolia, Acacia melanoxylon and Mimosa scabrella) was undertaken over two years in a distrophic red yellow latosol (oxisol) following a randomized block experimental design with four replications. At the age of two years, A. melanoxylon and L. diversifolia were the tallest species (5.25 and 4.97 m, respectively) and A. melanoxylon and M. scabrella had the largest diameters at 20 cm from tree base. Mimosa scabrella and A. melanoxylon had the highest dry matter production and quantity of nutrients in the above ground biomass. In all species, the highest nutrient contents were found in the leaves, followed by branches and stems. From all species, the highest Nutrient Utilization Efficiency Indexes were obtained for sulphur, phosphorous, and magnesium; L. diversifolia was the most efficient for nitrogen, potassium, calcium, sulphur, and manganese, while A. melanoxylon was the most efficient for phosphorus, magnesium, boron, iron, and zinc. Litter production levels over a three month period were as follows: M. scabrella > A. melanoxylon > L. diversifolia > L. leucocephala. Litter nutrient content was higher in M. scabrella than in the other species.
Resumo:
The digestible energy and apparent nutrient digestibility coefficients of common diet ingredients were determined for pacu Piaractus brachypomus (370.21 ± 17.56 g). Fish were fed with pelleted practical diets to apparent satiation and the feces were collected by siphoning. The digestibility value for each ingredient was determined by comparison of the digestibility of a test diet with a reference diet (24.5% crude protein and 1% chromic oxide). The digestible energy values of soybean meal (SBM), fish meal (FM), corn (CN), and wheat bran (WB) were 2382, 3826, 3353, and 1784 kcal/kg, respectively. The apparent dry matter digestibility coefficients were 83.72, 90.14, 89.13, and 82.05% for SBM, FM, CN, and WB, respectively. The apparent crude protein digestibility coefficients were 75.88, 90.49, 85.06, and 61.62% for SBM, FM, CN, and WB, respectively. The apparent lipid digestibility coefficients were 63.03, 77.00, 83.01, and 82.45% for SBM, FM, CN, and WB, respectively. The digestibility of protein, lipid, and energy from SBM were somewhat low compared to values for other warmwater omnivorous fishes, but similar to values reported for pacu-caranha P. mesopotamicus. Otherwise, the nutrient and energy availability of the ingredients to P. brachypomus was similar to that of other fish. This information will be useful in formulating nutritious, economical diets for pacus. © by the World Aquaculture Society 2004.
Resumo:
In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.
Resumo:
Fertilization of guava relies on soil and tissue testing. The interpretation of tissue test is currently conducted by comparing nutrient concentrations or dual ratios with critical values or ranges. The critical value approach is affected by nutrient interactions. Nutrient interactions can be described by dual ratios where two nutrients are compressed into a single expression or a ternary diagrams where one redundant proportion can be computed by difference between 100% and the sum of the other two. There are D(D-1) possible dual ratios in a D-parts composition and most of them are thus redundant. Nutrients are components of a mixture that convey relative, not absolute information on the composition. There are D-1 balances between components or ingredients in any mixture. Compositional data are intrinsically redundant, scale dependent and non-normally distributed. Based on the principles of equilibrium and orthogonality, the nutrient balance concept projects D-1 isometric log ratio (ilr) coordinates into the Euclidean space. The D-1 balances between groups of nutrients are ordered to reflect knowledge in plant physiology, soil fertility and crop management. Our objective was to evaluate the ilr approach using nutrient data from a guava orchard survey and fertilizer trials across the state of São Paulo, Brazil. Cationic balances varied widely between orchards. We found that the Redfield N/P ratio of 13 was critical for high guava yield. We present guava yield maps in ternary diagrams. Although the ratio between nutrients changing in the same direction with time is often assumed to be stationary, most guava nutrient balances and dual ratios were found to be non-stationary. The ilr model provided an unbiased nutrient diagnosis of guava. © ISHS.
Resumo:
Upland rice (Oryza sativa L.) cultivation has been increasing in global importance due to the decreasing water availability for flood- irrigated rice. The use of sprinkler irrigation to supplement rainfall and the identification of cultivars more adapted to lower water availability could be effective alternatives for producing upland rice without yield losses while using less water. The objective of this field study was to evaluate the root distribution, plant nutrition, and grain yield of two drought tolerant upland rice cultivars under two water regimes in the Cerrado Region of Brazil during two growing seasons. The main plots were two water regimes (rainfed and sprinkler-irrigation plus rainfall). Subplots were two upland rice cultivars Carajás and IAC 201. Low water availability reduced root growth by 7% and grain yields were from 2644 to 4002 kg ha-1 on average for rainfed and sprinkler irrigation treatments, respectively. Carajás had a significantly better root distribution, nutrient uptake, and higher grain yield (3732 kg ha-1) compared with IAC 201 (2914 kg ha-1) averaged over two growing seasons and water regimes. There were no treatment interactions. Our results suggest that, even when cultivars with a higher tolerance to less water availability are used, using sprinkler irrigation to augment limited rainfall during dry periods may be a viable method to increase upland rice grain yields. © 2013 by the American Society of Agronomy.
Resumo:
Plants have different levels of tolerance to phytotoxic effects of aluminum and the exploitation of this characteristic is of significant importance to the use of acid soils. This research aimed to evaluate the effect of aluminum activity in nutrient solution on growth of physic nut young plant. After seven days of adaptation, plants were submitted to Al concentrations of 0; 200; 400; 600; 800 and 1,000 μmol L-1, corresponding to Al3+ activity solution, of: 14.5, 21.4; 46.6; 75.6; 108.3 e 144.8 μmol L-1, respectively. The increased activity of Al3+ decreased linearly the number of leaves, plant height, leaf area, shoot dry matter and root length of physic nut plant. Physic nut young plants are sensitive to high aluminum activity in solution. The root length, number of leaves, shoot dry matter and total dry matter were variables more affected by Al activity in solution, and can be used to discriminate the tolerance levels to aluminum in physic nut plants. The accumulation of aluminum increased in a activity-dependent manner; however, its translocation from root to shoot was low.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Knowledge of the most essential nutrients for plant growth facilitates the efficient handling of its nutrition, especially when they are grown on a substrate supported by fertigation. The objective of this study was to determine the accumulation of nutrients in net melon grown on a substrate and understand the relationship between mineral nutrition and plant growth. The Fantasy hybrid was cultivated in pots containing a substrate consisting of a mixture of sand and peanut shells (ratio, 1:1). Determination of nutrient accumulation was performed in 6 seasons. The substrate was chemically characterized before and after cultivation. Harvesting occurred 78 days after transplantation, resulting in an average yield of 70,120 kg·ha-1. Substrate analysis showed a small increase in nutrient levels by the end of cultivation. The order of nutrient accumulation was as follows: N>Ca>K>P>Mg>S>B> Fe>Mn>Zn>Cu.
Resumo:
Aims: The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires. Methods: We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment. Results: Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment. Conclusions: Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Nutrient remobilizations in tree ligneous components have been little studied in tropical forests. A complete randomized block design was installed in Brazilian eucalypt plantations to quantify the remobilizations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) within stem wood. Three treatments were studied: control with neither K nor Na addition (C), 3 kmol ha-1 K applied (+K), and 3 kmol ha-1 Na applied (+Na). Biomass and nutrient contents were measured in the stem wood of eight trees destructively sampled at 1, 2, 3 and 4 years after planting in each treatment and annual rings were localized on discs of wood sampled every 3 m in half of the trees. Chemical analyses and wood density measurements were performed individually for each ring per level and per tree sampled. Nutrient remobilizations in annual rings were calculated through mass balance between two successive ages. Our results show that nutrient remobilizations within stem wood were mainly source-driven. Potassium and Na additions largely increased their concentration in the outer rings as well as the amounts remobilized in the first 2 years after the wood formation. The amount of Na remobilized in annual rings was 15 % higher in +Na than in +K the fourth year after planting despite a 34 % higher production of stem wood in +K leading to a much higher nutrient sink. A partial substitution of K by Na in the remobilizations within stem wood might contribute to enhancing Eucalyptus grandis growth in K-depleted soils. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.
Resumo:
ABSTRACT: The objective of this study was to evaluate the effect of inclusion of lipid residue of biodiesel originated in the processing of palm oil (Elaeis guineensis) in the diet on the digestibility of feedlot lambs. Twenty-five crossbred male castrated lambs, weighing 20±1.61 kg, were distributed in randomized blocks with five treatments and five replications. The experimental period lasted 22 days; 15 for diet adaptation, 2 for the adaptation to the indicator LIPE (lignin from Eucalyptus grandis isolated, purified and enriched, UFMG, Minas Gerais) and 5 for fecal sampling. Diets were formulated with 64% concentrate based on corn and soybean meal, 31% Massai grass (Panicum maximum cv. Massai) hay and 5% lipid supplementation from increasing levels of substitution of 0, 25, 50, 75 and 100% of palm oil for biodiesel oil from palm residue. The lambs were offered two meals a day, at 7h00 and 16h00. There was linear effect of inclusion of the residue from palm oil biodiesel on dry matter intake. There was no change in digestibility of nutrients except for ether extract. The use of biodiesel from palm oil residue up to 100% replacement for the lipid supplementation of sheep positively influences the consumption without altering the digestibility of nutrients.