975 resultados para nucleolar organizer region associated proteins
Resumo:
A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.
Resumo:
The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.
Resumo:
Current methods for purifying caveolae from tissue culture cells take advantage of the Triton X-100 insolubility of this membrane domain. To circumvent the use of detergents, we have developed a method that depends upon the unique buoyant density of caveolae membrane. The caveolae fractions that we obtain are highly enriched in caveolin. As a consequence we are able to identify caveolae-associated proteins that had previously gone undetected. Moreover, resident caveolae proteins that are soluble in Triton X-100 are retained during the isolation.
Resumo:
Tyrosinase (EC 1.14.18.1), the key enzyme in melanin synthesis, has been shown to be one of the targets for cytotoxic T-cell recognition in melanoma patients. To develop serological reagents useful for immunophenotyping melanoma for tyrosinase, human tyrosinase cDNA was expressed in an Escherichia coli expression vector. The purified recombinant tyrosinase was used to generate mouse monoclonal and rabbit polyclonal antibodies. The prototype monoclonal antibody, T311, recognized a cluster of protein moieties ranging from 70 to 80 kDa in tyrosinase mRNA-positive melanoma cell lines and melanoma specimens as well as in L cells transfected with tyrosinase cDNA. Untransfected L cells and L cells transfected with tyrosinase-related protein 1, TRP-1(gp75), were nonreactive. Immunohistochemical analysis of melanomas with T311 showed tyrosinase in melanotic and amelanotic variants, and tyrosinase expression correlated with the presence of tyrosinase mRNA. Melanocytes in skin stained with T311, whereas other normal tissues tested were negative. The expression pattern of three melanosome-associated proteins--tyrosinase, TRP-1(gp75), and gp100--in melanoma was also compared. Tyrosinase and gp100 are expressed in a higher percentage of melanomas than TRP-1(gp75), and the expression of these three antigens was discordant. Tyrosinase expression within individual tumor specimen is usually homogenous, distinctly different from the commonly observed heterogeneous pattern of gp100 expression.
Resumo:
The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation.
Resumo:
The human VHL tumor suppressor gene has been implicated in the inherited disorder von Hippel-Lindau disease and in sporadic renal carcinoma. The homologous rat gene encodes a 185-amino acid protein that is 88% sequence identical to the aligned 213-amino acid human VHL gene product. When expressed in COS-7 cells, both the human and the rat VHL proteins showed predominant nuclear, nuclear and cytosolic, or predominant cytosolic VHL staining by immunofluorescence. A complicated pattern of cellular proteins was seen that could be specifically coimmunoprecipitated with the introduced VHL protein. A complex containing VHL and proteins of apparent molecular masses 16 and 9 kDa was the most consistently observed. Certain naturally occurring VHL missense mutations demonstrated either complete or partial loss of the p16-p9 complex. Thus, the VHL tumor suppressor gene product is a nuclear protein, perhaps capable of specifically translocating between the nucleus and the cytosol. It is likely that VHL executes its functions via formation of specific multiprotein complexes. Identification of these VHL-associated proteins will likely clarify the physiology of this tumor suppressor gene.
Resumo:
Inheritance of specific apolipoprotein E (apoE) alleles determines, in large part, the risk and mean age of onset of late-onset familial and sporadic Alzheimer disease. The mechanism by which the apoE isoforms differentially contribute to disease expression is, however, unknown. Isoform-specific differences have been identified in the binding of apoE to the microtubule-associated protein tau, which forms the paired helical filament and neurofibrillary tangles, and to amyloid beta peptide, a major component of the neuritic plaque. These and other isoform-specific interactions of apoE give rise to testable hypotheses for the mechanism(s) of pathogenesis of Alzheimer disease. An unresolved issue of increasing importance is the relationship between the structural pathological lesions and the cellular pathogenesis responsible for the clinical disease phenotype, progressive dementia. The identification of apoE in the cytoplasm of human neurons and the characterization of isoform-specific binding of apoE to the microtubule-associated proteins tau and MAP-2 present the possibility that apoE may affect microtubule function in the Alzheimer brain.
Resumo:
The comparative ability of different methods to assess virulence of Listeria species was investigated in ten Listeria strains. All strains were initially subjected to pulsed-field gel electrophoresis analysis to determine their relatedness. Virulence characteristics were subsequently tested for by (i) determining the presence of six virulence genes by polymerase chain reaction; (ii) testing for the production of listeriolysin O, phosphatidylcholine phospholipase C, and phosphatidylinositol-specific phospholipase C; (iii) investigating the hydrophobicity of the strains; (iv) determining the strains ability to attach to, enter, and replicate within the Caco-2 cells. Variations in most of the virulence characteristics were obvious across the strains for the range of tests performed. A wide range of anomalous results among methods were apparent. In particular, the presence of virulence genes was found to be unrelated to the production of virulence-associated proteins in vitro, while virulence protein production and hydrophobicity in Listeria monocytogenes were found to be unrelated or marginally related, respectively, to the ability to invade the Caco-2 cell line. It was concluded that the methods investigated were unable to consistently and unequivocally measure the differences in the virulence properties of the strains.
Resumo:
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.
Resumo:
The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally.
Resumo:
The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC-MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins.
Resumo:
The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.
Resumo:
Salivary gland neoplasms exhibit a wide variety of biological behavior and a high morphological diversity raises the interest in researching these lesions. The stem cells are the main source for the generation and maintenance of cell diversity, disorders in the regulation of these cells can lead to the production of altered stem cells, termed cancer stem cells capable of generate the tumor. Researches on cancer stem cells and associated proteins have been developed in some oral cancers; however, their role in salivary gland neoplasms is not well established. Thus, the aim of this study was to identify the tumor parenchyma cells exhibiting stem cell characteristics, by evaluating the immunoreactivity of OCT4 and CD44, in a number of cases of salivary gland neoplasms. The sample consisted of 20 pleomorphic adenomas, 20 mucoepidermoid carcinomas and 20 adenoid cystic carcinoma located in minor and major salivary glands. The expression of OCT4 and CD44 was evaluated by the percentage of positive cells (PP) and the intensity of expression (IE), it is realized the sum of the scores, resulting in the total score immunostaining (PIT) ranging 0-7. All studied cases showed positive expression of OCT4 and CD44 and higher values than the control groups. It was observed that for OCT4 luminal cells and non-luminal were immunostained in the case of pleomorphic adenomas and adenoid cystic carcinoma. Already the immunoreactivity of CD44 was particularly evident in the non-luminal cells of these lesions. In mucoepidermoid carcinomas for both markers, there was immunoreactivity in squamous and intermediate cells and absence of staining mucous cells. For both markers, a statistically significant higher immunostaining was verified in neoplasms located in the major salivary glands compared with lesions in the minor salivary (p<0.001). At the total sample and in the group of minor salivary glands, malignant neoplasms exhibited higher immunoreactivity for OCT4 than pleomorphic adenoma. However, there was no statistically significant difference between the lesions and between their classifications histomorphologic. Analyzing the correlation between OCT4 and CD44 immunoexpressions, a statistically significant moderate positive correlation (r = 0.444) was observed. The high expression of OCT4 and CD44 may indicate that these proteins play an important role in identifying cancer stem cells, allowing a prediction of biological behavior of salivary gland neoplasms.
Resumo:
BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.
METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich α2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P≤0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-α (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-βR1 (P<0.001) and α-smooth muscle actin (P=0.025) expression.
CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, β-blocker therapy, and BNP.