821 resultados para node classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Sentinel lymph node biopsy (SLNB) is a validated staging technique for breast carcinoma. Some women are exposed to have a second SLNB due to breast cancer recurrence or a second neoplasia (breast or other). Due to modi- fied anatomy, it has been claimed that previous axillary surgery represents a contra-indication to SLNB. Our objective was to analyse the literature to assess if a second SLNB is to be recommended or not. Methods: For the present study, we performed a review of all published data during the last 10 years on patients with previous axilla surgery and second SLNB. Results: Our analysis shows that second SLNB is feasible in 70%. Extra-axillary SNs rate (31%) was higher after radical lymph node dissection (ALND) (60% - 84%) than after SLNB alone (14% - 65%). Follow-up and com- plementary ALND following negative and positive second SLNB shows that it is a reliable procedure. Conclusion: The review of literature confirms that SLNB is feasible after previous axillary dissection. Triple technique for SN mapping is the best examination to highlight modified lymphatic anatomy and shows definitively where SLNB must be per- formed. Surgery may be more demanding as patients may have more frequently extra-axillary SN only, like internal mammary nodes. ALND can be avoided when second SLNB harvests negative SNs. These conclusions should however be taken with caution because of the heterogeneity of publications regarding SLNB and surgical technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of lymph nodes in nonmelanoma skin cancer patients is currently still debated. Merkel cell carcinoma (MCC), squamous cell carcinoma (SCC), pigmented epithelioid melanocytoma (PEM), and other rare skin neoplasms have a well-known risk to spread to regional lymph nodes. The use of sentinel lymph node biopsy (SLNB) could be a promising procedure to assess this risk in clinically N0 patients. Metastatic SNs have been observed in 4.5-28% SCC (according to risk factors), in 9-42% MCC, and in 14-57% PEM. We observed overall 30.8% positive SNs in 13 consecutive patients operated for high-risk nonmelanoma skin cancer between 2002 and 2011 in our institution. These high rates support recommendation to implement SLNB for nonmelanoma skin cancer especially for SCC patients. Completion lymph node dissection following positive SNs is also a matter of discussion especially in PEM. It must be remembered that a definitive survival benefit of SLNB in melanoma patients has not been proven yet. However, because of its low morbidity when compared to empiric elective lymph node dissection or radiation therapy of lymphatic basins, SLNB has allowed sparing a lot of morbidity and could therefore be used in nonmelanoma skin cancer patients, even though a significant impact on survival has not been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: To compare the prognostic relevance of Masaoka and Müller-Hermelink classifications. METHODS: We treated 71 patients with thymic tumors at our institution between 1980 and 1997. Complete follow-up was achieved in 69 patients (97%) with a mean follow up-time of 8.3 years (range, 9 months to 17 years). RESULTS: Masaoka stage I was found in 31 patients (44.9%), stage II in 17 (24.6%), stage III in 19 (27.6%), and stage IV in 2 (2.9%). The 10-year overall survival rate was 83.5% for stage I, 100% for stage IIa, 58% for stage IIb, 44% for stage III, and 0% for stage IV. The disease-free survival rates were 100%, 70%, 40%, 38%, and 0%, respectively. Histologic classification according to Müller-Hermelink found medullary tumors in 7 patients (10.1%), mixed in 18 (26.1%), organoid in 14 (20.3%), cortical in 11 (15.9%), well-differentiated thymic carcinoma in 14 (20.3%), and endocrine carcinoma in 5 (7.3%), with 10-year overall survival rates of 100%, 75%, 92%, 87.5%, 30%, and 0%, respectively, and 10-year disease-free survival rates of 100%, 100%, 77%, 75%, 37%, and 0%, respectively. Medullary, mixed, and well-differentiated organoid tumors were correlated with stage I and II, and well-differentiated thymic carcinoma and endocrine carcinoma with stage III and IV (p < 0.001). Multivariate analysis showed age, gender, myasthenia gravis, and postoperative adjuvant therapy not to be significant predictors of overall and disease-free survival after complete resection, whereas the Müller-Hermelink and Masaoka classifications were independent significant predictors for overall (p < 0.05) and disease-free survival (p < 0.004; p < 0.0001). CONCLUSIONS: The consideration of staging and histology in thymic tumors has the potential to improve recurrence prediction and patient selection for combined treatment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principles: Surgeon's experience is crucial for proper application of sentinel node biopsy (SNB) in patients with breast cancer. A 20-30 cases learning curve of sentinel node (SN) and axillary lymph node dissection (ALND) was widely practiced. In order to speed up this learning curve, surgeons may be trained intraoperative by an experienced surgeon. The purpose of this report is to evaluate the results of this procedure. Methods: Patients with one primary invasive breast cancer (cT1-T2[<3 cm]cN0) underwent SNB based on lymphoscintigraphy using technetium Tc 99m colloid, intraoperative gamma probe detection, with or without blue dye mapping. This was followed by completion ALND when SN was positive or not found. SNB was performed by one experienced surgeon (teacher) or by 10 junior surgeons trained by the experienced surgeon (trainees). Four groups were defined: (i) SNB with immediate ALND for the teacher's learning curve, (ii) SNB by the teacher, (iii) SNB by the trainees under the teacher's supervision, and (iv) SNB by the trainees alone. Results: Between May 1999 and December 2007, a total of 808 évaluable patients underwent SNB. The SN identification rate was 98% in the teacher's group, and 99% in the trainees' group (p = 0.196). SN were positive in respectively 28% and 29% of patients (p = 0.196). The distribution of isolated tumor cells, micrometastases and metastases was not statistically different between the teacher's and the trainees' groups (p = 0.163). Conclusion: These comparable results confirm the success with which the SNB was taught. This strategy avoided the 20-30 SNB followed by immediate ALND early required per surgeon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of its 2006 systemic evaluation of DOC’s facilities, operations and programming, the Durrant/PBA consulting group found several shortcomings with the Department’s inmate custody classification system. Specifically, the consultants found that the system:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Map produced by Iowa Department of Transportation of System Classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report herein the case of a 57-year-old lady who had two concomittant lesions, an inflammatory myofibroblastic tumor in the trachea, and severe granulomatous lesions in the adjacent hilar lymph nodes. While these two lesions shared histological and some immunohistochemical features lesions. They differed in terms of ALK-1 expression, which was positive in the tracheal tumor and negative in the lymph nodes. The discussion of the case circles around putative pathophysiological links between the lesions. The authors favor the idea that the lymph nodes present a sarcoid-like granulomatous reaction to the inflammatory myofibroblastic tumor in the trachea over a coexistence of two independent entities. However, no conclusive evidence for this interpretation can be presented based on the existing literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For several years, the lack of consensus on definition, nomenclature, natural history, and biology of serrated polyps (SPs) of the colon has created considerable confusion among pathologists. According to the latest WHO classification, the family of SPs comprises hyperplastic polyps (HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas (TSAs). The term SSA/P with dysplasia has replaced the category of mixed hyperplastic/adenomatous polyps (MPs). The present study aimed to evaluate the reproducibility of the diagnosis of SPs based on currently available diagnostic criteria and interactive consensus development. In an initial round, H&E slides of 70 cases of SPs were circulated among participating pathologists across Europe. This round was followed by a consensus discussion on diagnostic criteria. A second round was performed on the same 70 cases using the revised criteria and definitions according to the recent WHO classification. Data were evaluated for inter-observer agreement using Kappa statistics. In the initial round, for the total of 70 cases, a fair overall kappa value of 0.318 was reached, while in the second round overall kappa value improved to moderate (kappa = 0.557; p < 0.001). Overall kappa values for each diagnostic category also significantly improved in the final round, reaching 0.977 for HP, 0.912 for SSA/P, and 0.845 for TSA (p < 0.001). The diagnostic reproducibility of SPs improves when strictly defined, standardized diagnostic criteria adopted by consensus are applied.