963 resultados para neutron stars
Resumo:
Financial and cultural aspects of corporate giving by UK and non-UK companies in response to the December 2004 South Asia Tsunami disaster are explored in this article. Literatures on corporate giving rationales, concepts of disaster and donor activity in disasters provide an underpinning. The article seeks to make connections between this high profile if short-lived business giving and the funding of the arts that is sought from business; and to draw tentative lessons for arts funding when seeking business support. The giving accounts in the wake of the Tsunami from a non-probability sample of 56 UK companies and 16 non-UK companies were examined. Reported online to the UK charity Business in the Community, these accounts were accessed in February 2005 and scrutinized thematically. Concurrently, company financial profiles to accompany giving figures were constructed. Although linkages between donation levels and financial performance were lacking, emerging themes included the role of employees, influencing company giving and creating a climate of expectation of firms' contributions. These developments may have important implications for business funding for the arts, where leading philanthropists are prominent as individuals in the giving landscapes; but employees' collective involvement is not marked. Alternatively, cultivation of employees as would-be donors, indirectly via their firms, may be a more secure, if lower level route to funding for some arts organizations than dependence on high profile business leaders. The article considers alternative scenarios for company giving in disaster contexts, including as a sustained and lasting giving theme or as company support as a ‘one-off’ event, rock-star style. The likely development of employee power as a key element in company giving is explored; and its wider meanings for funding in arts settings, (where the giver as rock star heroine/hero is also prominent) are considered.
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
Resumo:
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
Resumo:
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
The liquid structure of pyridine-acetic acid mixtures have been investigated using neutron scattering at various mole fractions of acetic acid, χHOAc = 0.33, 0.50, and 0.67, and compared to the structures of neat pyridine and acetic acid. Data has been modelled using Empirical Potential Structure Refinement (EPSR) with a ‘free proton’ reference model, which has no prejudicial weighting towards either the existence of molecular or ionised species. Analysis of the neutron scattering results shows the existence of hydrogen-bonded acetic acid chains with pyridine inclusions, rather than the formation of an ionic liquid by proton transfer.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disc interaction out of alignment during the pre-main-sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris discs. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disc inclinations shows no evidence for a misalignment between the two.
Resumo:
We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M-g = -19.3 +/- 0.2, and shows an asymmetric light curve. Stringent pre-discovery limits constrain its rise time to maximum light to less than 4 d, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M-g =-18.4 +/- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN Ib 2002bj. A stringent pre-discovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of +/- 1 d. The spectra of LSQ12btw show the typical narrow He I emission lines characterizing Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved H alpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.
Resumo:
High spectral resolution (~80 000) and signal-to-noise observations from the Ultraviolet and Visual Echelle Spectrograph Paranal Observatory Project (UVES-POP) are used to study the interstellarmolecular lines CN (3874 Å), CH+ (3957, 4232 Å) and CH (3886, 4300 Å) towards 74 O- and B-type stellar sightlines. Additionally, archive data are presented for 140 ELODIE early-type stellar sightlines at R = 42 000, plus 25 FEROS at R = 48 000 and 3 UVES at R > 50 000, mainly in the CH+ (4232 Å) and CH (3886, 4300 Å) transitions. Detection rates are ~45 per cent for CN and ~67 per cent for the other lines in the POP sample, and ~10-15 per cent for CH+ and CH lines in the additional sample. CH and CH+ are well correlated between log[N(CH) cm-2]~12-14, implying that these clouds are CH+-like CH and not CN-like CH. CH is also very well correlated with Na I D in the range log[N(Na I cm-2]) ~12.2-14.2. A few sightlines show tentative velocity shifts of ~2 km s-1 between CH and CH+, which appear to be caused by differences in component strength in blends, and hence do not provide firm evidence for shocks. Finally, we describe a search for 13CH+ in a sightline towards HD 76341. No 13CH+ is detected, placing a limit on the 13CH+ to 12CH+ ratio of ~0.01. If a formal fit is attempted, the equivalent width ratio in the two isotopes is a factor ~90 but with large errors.
Resumo:
The structure and properties of the diffuse interstellar medium (ISM) on small scales, sub-au to 1 pc, are poorly understood. We compare interstellar absorption-lines, observed towards a selection of O- and B-type stars at two or more epochs, to search for variations over time caused by the transverse motion of each star combined with changes in the structure in the foreground ISM. Two sets of data were used: 83 VLT- UVES spectra with approximately 6 yr between epochs and 21 McDonald observatory 2.7m telescope echelle spectra with 6 - 20 yr between epochs, over a range of scales from 0 - 360 au. The interstellar absorption-lines observed at the two epochs were subtracted and searched for any residuals due to changes in the foreground ISM. Of the 104 sightlines investigated with typically five or more components in Na I D, possible temporal variation was identified in five UVES spectra (six components), in Ca II, Ca I and/or Na I absorption-lines. The variations detected range from 7\% to a factor of 3.6 in column density. No variation was found in any other interstellar species. Most sightlines show no variation, with 3{\sigma} upper limits to changes of the order 0.1 - 0.3 dex in Ca II and Na I. These variations observed imply that fine-scale structure is present in the ISM, but at the resolution available in this study, is not very common at visible wavelengths. A determination of the electron densities and lower limits to the total number density of a sample of the sightlines implies that there is no striking difference between these parameters in sightlines with, and sightlines without, varying components.
Resumo:
We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the Optical Gravitational Lensing Experiment-IV survey, and spectroscopically followed by Public ESO Spectroscopic Survey of Transient Objects (PESSTO) at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 245 6203.8 +/- 4.0. The rise time to the I-band light-curve maximum is about two weeks. The object reaches the peak absolute magnitude M-I = -19.65 +/- 0.19 on JD = 245 6218.1 +/- 1.8. After maximum, the light curve declines for about 25 d with a rate of 4 mag (100 d)(-1). The symmetric I-band peak resembles that of canonical Type Ib/c supernovae (SNe), whereas SNe Ibn usually exhibit asymmetric and narrower early-time light curves. Since 25 d past maximum, the light curve flattens with a decline rate slower than that of the Co-56-Fe-56 decay, although at very late phases it steepens to approach that rate. However, other observables suggest that the match with the Co-56 decay rate is a mere coincidence, and the radioactive decay is not the main mechanism powering the light curve of OGLE-2012-SN-006. An early-time spectrum is dominated by a blue continuum, with only a marginal evidence for the presence of He I lines marking this SN type. This spectrum shows broad absorptions bluewards than 5000 angstrom, likely O II lines, which are similar to spectral features observed in superluminous SNe at early epochs. The object has been spectroscopically monitored by PESSTO from 90 to 180 d after peak, and these spectra show the typical features observed in a number of SN 2006jc-like events, including a blue spectral energy distribution and prominent and narrow (v(FWHM) approximate to 1900 km s(-1)) He I emission lines. This suggests that the ejecta are interacting with He-rich circumstellar material. The detection of broad (10(4) km s(-1)) O I and Ca II features likely produced in the SN ejecta (including the [OI] lambda lambda 6300,6364 doublet in the latest spectra) lends support to the interpretation of OGLE-2012-SN-006 as a core-collapse event.
Resumo:
We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M-R = -18.86 +/- 0.21. Its early light curve shows similarities with normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs, the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double peak. The absolute magnitude at discovery is similar to that of the second peak (M-R = -18.59 +/- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are clearly detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectrophotometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.