945 resultados para neuropsychiatric disturbances
Resumo:
The theory, design, and performance of a solid electrolyte twin thermocell for the direct determination of the partial molar entropy of oxygen in a single-phase or multiphase mixture are described. The difference between the Seebeck coefficients of the concentric thermocells is directly related to the difference in the partial molar entropy of oxygen in the electrodes of each thermocell. The measured potentials are sensitive to small deviations from equilibrium at the electrodes. Small electric disturbances caused by simultaneous potential measurements or oxygen fluxes caused by large oxygen potential gradients between the electrodes also disturb the thermoelectric potential. An accuracy of ±0.5 calth K−1 mol−1 has been obtained by this method for the entropies of formation of NiO and NiAl2O4. This “entropy meter” may be used for the measurement of the entropies of formation of simple or complex oxides with significant residual contributions which cannot be detected by heat-capacity measurements.
Resumo:
This paper describes the simulation of a control scheme using the principle of field orientation for the control of a voltage source inverter-fed induction motor. The control principle is explained, followed by an algorithm to simulate various components of the system in the digital computer. The dynamic response of the system for the load disturbance and set-point variations have been studied. Also, the results of the simulation showing the behavior of field coordinates for such disturbances are given.
Resumo:
The question of achieving decoupling and asymptotic disturbance rejection in time-invariant linear multivariable systems subject to unmeasurable arbitrary disturbances of a given class is discussed. A synthesis procedure which determines a feedback structure, incorporating an integral compensator, is presented.
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.
Resumo:
Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Intelligent Approach for Fault Diagnosis in Power Transmission Systems Using Support Vector Machines
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
This paper presents a method for placement of Phasor Measurement Units, ensuring the monitoring of vulnerable buses which are obtained based on transient stability analysis of the overall system. Real-time monitoring of phase angles across different nodes, which indicates the proximity to instability, the very purpose will be well defined if the PMUs are placed at buses which are more vulnerable. The issue is to identify the key buses where the PMUs should be placed when the transient stability prediction is taken into account considering various disturbances. Integer Linear Programming technique with equality and inequality constraints is used to find out the optimal placement set with key buses identified from transient stability analysis. Results on IEEE-14 bus system are presented to illustrate the proposed approach.
Resumo:
A growing understanding of the ecology of seed dispersal has so far had little influence on conservation practice, while the needs of conservation practice have had little influence on seed dispersal research. Yet seed dispersal interacts decisively with the major drivers of biodiversity change in the 21st century: habitat fragmentation, overharvesting, biological invasions, and climate change. We synthesize current knowledge of the effects these drivers have on seed dispersal to identify research gaps and to show how this information can be used to improve conservation management. The drivers, either individually, or in combination, have changed the quantity, species composition, and spatial pattern of dispersed seeds in the majority of ecosystems worldwide, with inevitable consequences for species survival in a rapidly changing world. The natural history of seed dispersal is now well-understood in a range of landscapes worldwide. Only a few generalizations that have emerged are directly applicable to conservation management, however, because they are frequently confounded by site-specific and species-specific variation. Potentially synergistic interactions between disturbances are likely to exacerbate the negative impacts, but these are rarely investigated. We recommend that the conservation status of functionally unique dispersers be revised and that the conservation target for key seed dispersers should be a population size that maintains their ecological function, rather than merely the minimum viable population. Based on our analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed dispersal networks. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an investigation of the fluid flow in the fully developed portion of a rectangular channel (Aspect Ratio of 2) with dimples applied to one wall at channel Reynolds numbers of 20,000, 30,000, and 40,000. The dimples are applied in a staggered-row, racetrack configuration. Results for three different dimple geometries are presented: a large dimple, small dimple, and double dimple. Heat transfer and aerodynamic results from preceding works are presented in Nusselt number and friction factor augmentation plots as determined experimentally. Using particle image velocimetry, the region near the dimple feature is studied in detail in the location of the entrainment and ejection of vortical packets into and out of the dimple; the downstream wake region behind each dimple is also studied to examine the effects of the local flow phenomenon that result in improved heat transfer in the areas of the channel wall not occupied by a feature. The focus of the paper is to examine the secondary flows in these dimpled channels in order to support the previously presented heat transfer trends. The flow visualization is also intended to improve the understanding of the flow disturbances in a dimpled channel; a better understanding of these effects would lead the development of more effective channel cooling designs. Copyright © 2011 by ASME.
Resumo:
Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.
Resumo:
With the advances of techniques for RCS reduction, it has become practical to develop aircraft which are invisible to modern day radars. In order to detect such low visible targets it is necessary to explore other phenomenon that contributes to the scattering of incident electromagnetic wave. It is well known from the developments from the clear air scattering using RASS induced acoustic wave could be used to create dielectric constant fluctuation. The scattering from these fluctuations rather than from the aircraft have been observed to enhance the RCS of clear air, under the condition when the incident EM wave is half of the acoustic wave, the condition of Bragg scattering would be met and RCS would be enhanced. For detecting low visibility targets which are at significant distance away from the main radar, inducement of EM fluctuation from acoustic source collocated with the acoustic source is infeasible. However the flow past aircraft produces acoustic disturbances around the aircraft can be exploited to detect low visibility targets. In this paper numerical simulation for RCS enhancement due to acoustic disturbances is presented. In effect, this requires the solution of scattering from 3D inhomogeneous complex shaped bodies. In this volume surface integral equation (VSIE) is used to compute the RCS from fluctuation introduced through the acoustic disturbances. Though the technique developed can be used to study the scattering from radars of any shape and acoustic disturbances of any shape. For illustrative condition, enhancement due to the Bragg scattering are shown to improve the RCS by nearly 30dB, for air synthetic sinusoidal acoustic variation profile for a spherical scattering volume
Resumo:
This paper illustrates the application of a new technique, based on Support Vector Clustering (SVC) for the direct identification of coherent synchronous generators in a large interconnected Multi-Machine Power Systems. The clustering is based on coherency measures, obtained from the time domain responses of the generators following system disturbances. The proposed clustering algorithm could be integrated into a wide-area measurement system that enables fast identification of coherent clusters of generators for the construction of dynamic equivalent models. An application of the proposed method is demonstrated on a practical 15 generators 72-bus system, an equivalent of Indian Southern grid in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations on coherency are also investigated.
Resumo:
Model free simulations are performed to study the effect of the presence of side wall in compressible mixing of two parallel dissimilar gaseous streams with significant temperature difference. The turbulence statistics shows the three dimensional nature of the flow with and without the presence of side walls. The presence of side wall neither makes the flow field two dimensional, nor suppresses three dimensional disturbances. However, the comparison of shear layer growth rate and wall pressures reveal a better match with the two dimensional simulation results. This better match is explained on the basis of formation of oblique structures due to the presence of side walls which also suppress the distribution of momentum in third direction making the pressures to be higher as compared with the case without side walls. (C) 2013 Elsevier Ltd. All rights reserved.