408 resultados para neuropeptide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (P<0.05) but not in control diet-fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (P<0.05) but not in control diet-fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet-fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione (GSH) is a tripeptide often considered to be the master antioxidant in cells. GSH plays an integral role in cellular redox regulation and is also known to have a role in mammalian copper homeostasis. In vitro evidence suggests that GSH is involved in copper uptake, sequestration and efflux. This study was undertaken to further investigate the roles that GSH plays in neuronal copper homeostasis in vivo, using the model organism Drosophila melanogaster. RNA interference-mediated knockdown of the Glutamate-cysteine ligase catalytic subunit gene (Gclc) that encodes the rate-limiting enzyme in GSH biosynthesis was utilised to genetically deplete GSH levels. When Gclc was knocked down in all neurons, this caused lethality, which was partially rescued by copper supplementation and was exacerbated by additional knockdown of the copper uptake transporter Ctr1A, or over-expression of the copper efflux transporter ATP7. Furthermore, when Gclc was knocked down in a subset of neuropeptide-producing cells, this resulted in adult progeny with unexpanded wings, a phenotype previously associated with copper dyshomeostasis. In these cells, Gclc suppression caused a decrease in axon branching, a phenotype further enhanced by ATP7 over-expression. Therefore, we conclude that GSH may play an important role in regulating neuronal copper levels and that reduction in GSH may lead to functional copper deficiency in neurons in vivo. We provide genetic evidence that glutathione (GSH) levels influence Cu content or distribution in vivo, in Drosophila neurons. GSH could be required for binding Cu imported by Ctr1A and distributing it to chaperones, such as Mtn, CCS and Atox1. Alternatively, GSH could modify the copper-binding and transport activities of Atox1 and the ATP7 efflux protein via glutathionylation of copper-binding cysteines.