959 resultados para nerve fibre layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar incompressible nonsimilar boundary layer flow over a circular cylinder placed symmetrically inside a channel has been studied when the unsteadiness and nonsimilarity are due to the free stream velocity. The nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference in combination with the quasilinearization technique. It is found that the channel blockage parameter controls the transfer of heat from the cylinder and delays separation. The skin friction and heat transfer are significantly affected by the free stream velocity distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using normal mode analysis Rayleigh-Taylor instability is investigated for three-layer viscous stratified incompressible steady flow, when the top 3rd and bottom 1st layers extend up to infinity, the middle layer has a small thickness δ. The wave Reynolds number in the middle layer is assumed to be sufficiently small. A dispersion relation (a seventh degree polynomial in wave frequency ω) valid up to the order of the maximal value of all possible Kj (j less-than-or-equals, slant 0, K is the wave number) in each coefficient of the polynomial is obtained. A sufficient condition for instability is found out for the first time, pursuing a medium wavelength analysis. It depends on ratios (α and β) of the coefficients of viscosity, the thickness of the middle layer δ, surface tension ratio T and wave number K. This is a new analytical criterion for Rayleigh-Taylor instability of three-layer fluids. It recovers the results of the corresponding problem for two-layer fluids. Among the results obtained, it is observed that taking the coefficients of viscosity of 2nd and 3rd layers same can inhibit the effect of surface tension completely. For large wave number K, the thickness of the middle layer should be correspondingly small to keep the domain of dependence of the threshold wave number Kc constant for fixed α, β and T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic structure and the heights of the boundary layer over the monsoon trough region of the Indian southwest monsoon are presented for the active and break phases of the monsoon. Results indicate significant and consistent variation in boundary-layer heights between the active and break phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper strips of 2.5 mm thickness resting on stainless steel anvils were normally indented by wedges under nominal plane strain conditions. Inflections in the hardness-penetration characteristics were identified. Inflections separate stages where each stage has typical mechanics of deformation. These are arrived at by studying the distortion of 0.125 mm spaced grids inscribed on the deformation plane of the strip. The sensitivity of hardness and deformation mechanics to wedge angle and the interfacial friction between strip and anvil were investigated within the framework of existing slip line field models of indentation of semi-infinite and finite blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broadband behaviour of a three-layer electromagnetically coupled circular microstrip antenna is investigated experimentally. The effects of interlayer spacings and the thickness of the parasitic layers on the impedance bandwidth, 3 dB beamwidth and pattern shape, are studied. Experiments show that this structure can provide a frequency bandwidth as high as 20% with a low crosspolarisation level and a moderately high gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boundary-layer transition at different free-stream turbulence levels has been investigated using the particle-image velocimetry technique. The measurements show organized positive and negative fluctuations of the streamwise fluctuating velocity component, which resemble the forward and backward jet-like structures reported in the direct numerical simulation of bypass transition. These fluctuations are associated with unsteady streaky structures. Large inclined high shear-layer regions are also observed and the organized negative fluctuations are found to appear consistently with these inclined shear layers, along with highly inflectional instantaneous streamwise velocity profiles. These inflectional velocity profiles are similar to those in the ribbon-induced boundary-layer transition. An oscillating-inclined shear layer appears to be the turbulent spot-precursor. The measurements also enabled to compare the actual turbulent spot in bypass transition with the simulated one. A proper orthogonal decomposition analysis of the fluctuating velocity field is carried out. The dominant flow structures of the organized positive and negative fluctuations are captured by the first few eigenfunction modes carrying most of the fluctuating energy. The similarity in the dominant eigenfunctions at different Reynolds numbers suggests that the flow prevails its structural identity even in intermittent flows. This analysis also indicates the possibility of the existence of a spatio-temporal symmetry associated with a travelling wave in the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter is a significant period for the seasonality of northern plants, but is often overlooked when studying the interactions of plants and their environment. This study focuses on the effects of overwintering conditions, including warm winter periods, snow, and snowmelt on boreal and sub-Arctic field layer plants. Wintertime photosynthesis and related physiological factors of evergreen dwarf shrubs, particularly of Vaccinium vitis-idaea, are emphasised. The work combines experiments both in the field and in growth chambers with measurements in natural field conditions. Evergreen dwarf shrubs are predominantly covered by snow in the winter. The protective snow cover provides favourable conditions for photosynthesis, especially during the spring before snowmelt. The results of this study indicate that photosynthesis occurs under the snow in V. vitis-idaea. The light response of photosynthesis determined in field conditions during the period of snow cover shows that positive net CO2 exchange is possible under the snow in the prevailing light and temperature. Photosynthetic capacity increases readily during warm periods in winter and the plants are thus able to replenish carbohydrate reserves lost through respiration. Exposure to low temperatures in combination with high light following early snowmelt can set back photosynthesis as sustained photoprotective measures are activated and photodamage begins to build up. Freezing may further decrease the photosynthetic capacity. The small-scale distribution of many field layer plants, including V. vitis-idaea and other dwarf shrubs, correlates with the snow distribution in a forest. The results of this study indicate that there are species-specific differences in the snow depth affinity of the field and ground layer species. Events and processes taking place in winter can have a profound effect on the overall performance of plants and on the interactions between plants and their environment. Understanding the processes involved in the overwintering of plants is increasingly important as the wintertime climate in the north is predicted to change in the future.