843 resultados para n-3 LC-PUFA biosynthesis enzymes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botryosphaeran, a new exopolysaccharide from the endophytic fungus Botryosphaeria rhodina MAMB-05, and algal laminarin were hydrolyzed by partially-fractionated enzymes of the beta-glucanolytic complex from Trichoderma harzianum Rifai. beta-Glucanase fractions (F-I and F-II) separated by gel permeation chromatography presented different modes of attack on botryosphaeran and laminarin. Botryosphaeran was hydrolyzed to the extent of 66% (F-I) and 98% (F-II) within 30 min, and its main hydrolysis products were gluco-oligosaccharides of DP >= 4, with lesser amounts of glucose, di- and tri-saccharides. The action of enzyme fractions I and II on laminarin resulted in 15% conversion to glucose, while the percentage of saccharification was radically different (70% for F-I and 25% for F-II). The different product arrays within the polysaccharide hydrolysates can be explained by the difference in the enzymes' specificities within each enzyme fraction, and the molecular structures of the polysaccharides and their complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esterases are a group of enzymes that are reportedly associated with acaricide resistance in Riphicephallus (Boophilus) microplus. A comparative analysis was made of the esterase patterns in malathion and deltamethrin-sensitive, tolerant and resistant tick groups, using non-denaturing polyacrylamide gel electrophoresis. Electrophoretical profiles revealed four bands of esterase activity against alpha-naphthyl acetate; which were dubbed EST-1 to EST-4. The EST-3 and EST-4 were detected in all strains and were classified as carboxylesterases (CaEs). The EST-2, classified as an acetylcholinesterase (AChE), was detected in all groups, but its staining intensity increased from susceptible to resistant groups, indicating an altered production according to the degree of resistance. EST-1, which was also classified as an AChE, was detected exclusively in tolerant and resistant groups to both acaricides, but displayed greater activity in the malathion-resistant group. These data suggest that these AChEs may represent an important detoxification strategy developed to overcome the effects of acaricides. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-one-day old male Wistar rats were injected subcutaneously with guanethidine (GUA) at doses of 5 and 10 mg kg(-1) day(-1) for 20 days. Animals were sacrificed by decapitation during the prepubertal (41 days of age) and early-pubertal (51 days of age) periods of sexual development. The testes were collected, frozen in liquid N-2 and stored at -70 degrees C until determination of testicular progesterone (P): androstenedione (A) and testosterone (T). Higher levels of P (2.18 +/- 0.24 ng/g. control = 1.24 +/- 0.16 ng/g) associated with decreased levels of androgens (A = 0.26 +/- 0.06 ng/g and T = 2.05 +/- 0.19 ng/g; control = 1.86 +/- 0.76 ng/g and 8.48 +/- 1.16 ng/g, respectively) were observed in 10 mg GUA-treated rats of prepubertal age, while only P levels (3.12 +/- 0.51 ng/g control = 1.73 +/- 0.27 ng/g) were increased in rats of early pubertal age. It is important to note that in 41-day old male rats both 5 and 10 mg were effective in decreasing testicular concentration of testosterone. These results suggest that the sympathetic innervation of the testis is involved in the modulation of androgen biosynthesis, acting through a selective step in the steroid biochemical pathway during the pubertal process and that under the conditions employed the blockage in androgen biosynthesis in the prepubertal stage of sexual maturation is dependent on the dose of GUA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunohistochemistry was used to analyze the rat brain distribution of thimet oligopeptidase and neurolysin. Both enzymes appear ubiquitously distributed within the entire rat brain. However, neuronal perikarya and processes stained for neurolysin, while intense nuclear labeling was only observed for thimet oligopeptidase. These data suggest that neurolysin and thimet oligopeptidase, endopeptidases sharing several functional and structural similarities, are present in distinctive intracellular compartments in neuronal cells. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maytenus aquifolium (Celastraceae) and Salacia campestris (Hippocrateaceae) species accumulate friedelane and quinonemethide triterpenoids in their leaves and root bark, respectively. Enzymatic extracts obtained from leaves displayed cyclase activity with conversion of the substrate oxidosqualene to the triterpenes, 3 beta -friedelanol and friedelin. In addition, administration of (+/-)5-H-3 mevalonolactone in leaves of M. aquifolium seedlings produced radio labelled friedelin in the leaves, twigs and stems, while the root bark accumulated labelled maytenin and pristimerin. These experiments indicated that the triterpenes once biosynthesized in the leaves are translocated to the root bark and further transformed to the antitumoral quinonemethide triterpenoids. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 mi of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.