874 resultados para muscle excitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical relevance of accurately diagnosing pleomorphic sarcomas has been shown, especially in cases of undifferentiated pleomorphic sarcomas with myogenic differentiation, which appear significantly more aggressive. To establish a new smooth muscle differentiation classification and to test its prognostic value, 412 sarcomas with complex genetics were examined by immunohistochemistry using four smooth muscle markers (calponin, h-caldesmon, transgelin and smooth muscle actin). Two tumor categories were first defined: tumors with positivity for all four markers and tumors with no or incomplete phenotypes. Multivariate analysis demonstrated that this classification method exhibited the strongest prognostic value compared with other prognostic factors, including histological classification. Secondly, incomplete or absent smooth muscle phenotype tumor group was then divided into subgroups by summing for each tumor the labeling intensities of all four markers for each tumors. A subgroup of tumors with an incomplete but strong smooth muscle differentiation phenotype presenting an intermediate metastatic risk was thus identified. Collectively, our results show that the smooth muscle differentiation classification method may be a useful diagnostic tool as well as a relevant prognostic tool for undifferentiated pleomorphic sarcomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue-engineered grafts for the urinary tract are being investigated for the potential treatment of several urologic diseases. These grafts, predominantly tubular-shaped, usually require in vitro culture prior to implantation to allow cell engraftment on initially cell-free scaffolds. We have developed a method to produce tubular-shaped collagen scaffolds based on plastic compression. Our approach produces a ready cell-seeded graft that does not need further in vitro culture prior to implantation. The tubular collagen scaffolds were in particular investigated for their structural, mechanical and biological properties. The resulting construct showed an especially high collagen density, and was characterized by favorable mechanical properties assessed by axial extension and radial dilation. Young modulus in particular was greater than non-compressed collagen tubes. Seeding densities affected proliferation rate of primary human bladder smooth muscle cells. An optimal seeding density of 10(6) cells per construct resulted in a 25-fold increase in Alamar blue-based fluorescence after 2 wk in culture. These high-density collagen gel tubes, ready seeded with smooth muscle cells could be further seeded with urothelial cells, drastically shortening the production time of graft for urinary tract regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Neurophysiological monitoring aims to improve the safety of pedicle screw placement, but few quantitative studies assess specificity and sensitivity. In this study, screw placement within the pedicle is measured (post-op CT scan, horizontal and vertical distance from the screw edge to the surface of the pedicle) and correlated with intraoperative neurophysiological stimulation thresholds. METHODS: A single surgeon placed 68 thoracic and 136 lumbar screws in 30 consecutive patients during instrumented fusion under EMG control. The female to male ratio was 1.6 and the average age was 61.3 years (SD 17.7). Radiological measurements, blinded to stimulation threshold, were done on reformatted CT reconstructions using OsiriX software. A standard deviation of the screw position of 2.8 mm was determined from pilot measurements, and a 1 mm of screw-pedicle edge distance was considered as a difference of interest (standardised difference of 0.35) leading to a power of the study of 75 % (significance level 0.05). RESULTS: Correct placement and stimulation thresholds above 10 mA were found in 71 % of screws. Twenty-two percent of screws caused cortical breach, 80 % of these had stimulation thresholds above 10 mA (sensitivity 20 %, specificity 90 %). True prediction of correct position of the screw was more frequent for lumbar than for thoracic screws. CONCLUSION: A screw stimulation threshold of >10 mA does not indicate correct pedicle screw placement. A hypothesised gradual decrease of screw stimulation thresholds was not observed as screw placement approaches the nerve root. Aside from a robust threshold of 2 mA indicating direct contact with nervous tissue, a secondary threshold appears to depend on patients' pathology and surgical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle mitochondrial (Mito) and lipid droplet (Lipid) content are often measured in human translational studies. Stereological point counting allows computing Mito and Lipid volume density (Vd) from micrographs taken with transmission electron microscopes. Former studies are not specific as to the size of individual squares that make up the grids, making reproducibility difficult, particularly when different magnifications are used. Our objective was to determine which size grid would be best at predicting fractional volume efficiently without sacrificing reliability and to test a novel method to reduce sampling bias. Methods: ten subjects underwent vastus lateralis biopsies. Samples were fixed, embedded, and cut longitudinally in ultrathin sections of 60 nm. Twenty micrographs from the intramyofibrillar region were taken per subject at Ã-33,000 magnification. Different grid sizes were superimposed on each micrograph: 1,000 Ã- 1,000 nm, 500 Ã- 500 nm, and 250 Ã- 250 nm. Results: mean Mito and Lipid Vd were not statistically different across grids. Variability was greater when going from 1,000 Ã- 1,000 to 500 Ã- 500 nm grid than from 500 Ã- 500 to 250 Ã- 250 nm grid. Discussion: this study is the first to attempt to standardize grid size while keeping with the conventional stereology principles. This is all in hopes of producing replicable assessments that can be obtained universally across different studies looking at human skeletal muscle mitochondrial and lipid droplet content.