895 resultados para motor neuron disease
Resumo:
Many farmers in South and Southeast Asia describe rice tungro disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (121). As the most important of the 14 rice viral diseases, tungro was first recognized as a leafhopper-transmitted virus disease in 1963 (88). However, tungro, which means “degenerated growth” in a Filipino dialect, has a much longer history. It is almost certain that tungro was responsible for a disease outbreak that occurred in 1859 in Indonesia, which was referred to at the time as mentek (83). In the past, a variety of names has been given to tungro, including accep na pula in the Philippines, penyakit merah in Malaysia, and yelloworange leaf in Thailand (83).
Resumo:
Socio-economic gradients in cardiovascular disease (CVD) and diabetes have been found throughout the developed world and there is some evidence to suggest that these gradients may be steeper for women. Research on social gradients in biological risk factors for CVD and diabetes has received less attention and we do not know the extent to which gradients in biomarkers vary for men and women. We examined the associations between two indicators of socio-economic position (education and household income) and biomarkers of diabetes and cardiovascular disease (CVD) for men and women in a national, population-based study of 11,247 Australian adults. Multi-level linear regression was used to assess associations between education and income and glucose tolerance, dyslipidaemia, blood pressure (BP) and waist circumference before and after adjustment for behaviours (diet, smoking, physical activity, TV viewing time, and alcohol use). Measures of glucose tolerance included fasting plasma glucose and insulin and the results of a glucose tolerance test (2 h glucose) with higher levels of each indicating poorer glucose tolerance. Triglycerides and High Density Lipoprotein (HDL) Cholesterol were used as measures of dyslipidaemia with higher levels of the former and lower levels of the later being associated with CVD risk. Lower education and low income were associated with higher levels of fasting insulin, triglycerides and waist circumference in women. Women with low education had higher systolic and diastolic BP and low income women had higher 2 h glucose and lower HDL cholesterol. With only one exception (low income and systolic BP), all of these estimates were reduced by more than 20% when behavioural risk factors were included. Men with lower education had higher fasting plasma glucose, 2 h glucose, waist circumference and systolic BP and, with the exception of waist circumference, all of these estimates were reduced when health behaviours were included in the models. While low income was associated with higher levels of 2-h glucose and triglycerides it was also associated with better biomarker profiles including lower insulin, waist circumference and diastolic BP. We conclude that low socio-economic position is more consistently associated with a worse profile of biomarkers for CVD and diabetes for women.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Objective: With growing recognition of the role of inflammation in the development of chronic and acute disease, fish oil is increasingly used as a therapeutic agent, but the nature of the intervention may pose barriers to adherence in clinical populations. Our objective was to investigate the feasibility of using a fish oil supplement in hemodialysis patients. ---------- Design: This was a nonrandomized intervention study.---------- Setting: Eligible patients were recruited at the Hemodialysis Unit of Wesley Hospital, Brisbane, Queensland, Australia. Patients The sample included 28 maintenance hemodialysis patients out of 43 eligible patients in the unit. Exclusion criteria included patients regularly taking a fish oil supplement at baseline, receiving hemodialysis for less than 3 months, or being unable to give informed consent.---------- Intervention: Eicosapentaenoic acid (EPA) was administered at 2000 mg/day (4 capsules) for 12 weeks. Adherence was measured at baseline and weekly throughout the study according to changes in plasma EPA, and was further measured subjectively by self-report.---------- Results: Twenty patients (74%) adhered to the prescription based on changes in plasma EPA, whereas an additional two patients self-reported good adherence. There was a positive relationship between fish oil intake and change in plasma EPA. Most patients did not report problems with taking the fish oil. Using the baseline data, it was not possible to characterize adherent patients.---------- Conclusions: Despite potential barriers, including the need to take a large number of prescribed medications already, 74% of hemodialysis patients adhered to the intervention. This study demonstrated the feasibility of using fish oil in a clinical population.
Resumo:
Poor patient compliance with peritoneal dialysis (PD) has significant adverse effects on morbidity and mortality rates in individuals with chronic kidney disease (CKD). It also adds to the resource burdens of healthcare services and providers. This paper explores the notion of PD compliance in patients with CKD with reference to the relevant published literature. The analysis of the literature reveals that ‘PD compliance’ is a complex and challenging construct for both patients and health professionals. There is no universal definition of compliance that is widely adopted in practice and research, and therefore a lack of consensus on how to determine ‘compliant’ patient outcomes. There are also multiple and interconnected determinants of PD compliance that are context-bound, which healthcare professionals must be aware of, and which makes producing consensus of measuring PD compliance difficult. The complexity of the interventions required to produce even a modest improvement in PD compliance, which are described in this paper, are significant. Compliance with PD and other treatments for CKD is a multidimensional, context-bound concept, that to date has tended to efface the role and needs of the renal patient. We conclude the paper with the implications for contemporary practice.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
Despite recent public attention to e-health as a solution to rising healthcare costs and an ageingpopulation, there have been relatively few studies examining the geographical pattern of e-health usage. This paper argues for an equitable approach to e-health and attention to the way in which e-health initiatives can produce locational health inequalities, particularly in socioeconomically disadvantaged areas. In this paper, we use a case study to demonstrate geographical variation in Internet accessibility, Internet status and prevalence of chronic diseases within a small district. There are signifi cant disparities in access to health information within socioeconomically disadvantaged areas. The most vulnerable people in these areas are likely to have limited availability of, or access to Internet healthcare resources. They are also more likely to have complex chronic diseases and, therefore, be in greatest need of these resources. This case study demonstrates the importance of an equitable approach to e-health information technologies and telecommunications infrastructure.
Resumo:
Banana leaf streak disease, caused by several species of Banana streak virus (BSV), is widespread in East Africa. We surveyed for this disease in Uganda and Kenya, and used rolling-circle amplification (RCA) to detect the presence of BSV in banana. Six distinct badnavirus sequences, three from Uganda and three from Kenya, were amplified for which only partial sequences were previously available. The complete genomes were sequenced and characterised. The size and organisation of all six sequences was characteristic of other badnaviruses, including conserved functional domains present in the putative polyprotein encoded by open reading frame (ORF) 3. Based on nucleotide sequence analysis within the reverse transcriptase/ribonuclease H-coding region of open reading frame 3, we propose that these sequences be recognised as six new species and be designated as Banana streak UA virus, Banana streak UI virus, Banana streak UL virus, Banana streak UM virus, Banana streak CA virus and Banana streak IM virus. Using PCR and species-specific primers to test for the presence of integrated sequences, we demonstrated that sequences with high similarity to BSIMV only were present in several banana cultivars which had tested negative for episomal BSV sequences.
Resumo:
Background: Palliative care should be provided according to the individual needs of the patient, caregiver and family, so that the type and level of care provided, as well as the setting in which it is delivered, are dependent on the complexity and severity of individual needs, rather than prognosis or diagnosis. This paper presents a study designed to assess the feasibility and efficacy of an intervention to assist in the allocation of palliative care resources according to need, within the context of a population of people with advanced cancer. ---------- Methods/design: People with advanced cancer and their caregivers completed bi-monthly telephone interviews over a period of up to 18 months to assess unmet needs, anxiety and depression, quality of life, satisfaction with care and service utilisation. The intervention, introduced after at least two baseline phone interviews, involved a) training medical, nursing and allied health professionals at each recruitment site on the use of the Palliative Care Needs Assessment Guidelines and the Needs Assessment Tool: Progressive Disease - Cancer (NAT: PD-C); b) health professionals completing the NAT: PD-C with participating patients approximately monthly for the rest of the study period. Changes in outcomes will be compared pre-and post-intervention.---------- Discussion: The study will determine whether the routine, systematic and regular use of the Guidelines and NAT: PD-C in a range of clinical settings is a feasible and effective strategy for facilitating the timely provision of needs based care.
Resumo:
Background: Despite declining rates of cardiovascular disease (CVD) mortality in developed countries, lower socioeconomic groups continue to experience a greater burden of the disease. There are now many evidence-based treatments and prevention strategies for the management of CVD and it is essential that their impact on the more disadvantaged group is understood if socioeconomic inequalities in CVD are to be reduced. Aims: To determine whether key interventions for CVD prevention and treatment are effective among lower socioeconomic groups, to describe barriers to their effectiveness and the potential or actual impact of these interventions on the socioeconomic gradient in CVD. Methods: Interventions were selected from four stages of the CVD continuum. These included smoking reduction strategies, absolute risk assessment, cardiac rehabilitation, secondary prevention medications, and heart failure self-management programmes. Electronic searches were conducted using terms for each intervention combined with terms for socioeconomic status (SES). Results: Only limited evidence was found for the effectiveness of the selected interventions among lower SES groups and there was little exploration of socioeconomic-related barriers to their uptake. Some broad themes and key messages were identified. In the majority of findings examined, it was clear that the underlying material, social and environmental factors associated with disadvantage are a significant barrier to the effectiveness of interventions. Conclusion: Opportunities to reduce socioeconomic inequalities occur at all stages of the CVD continuum. Despite this, current treatment and prevention strategies may be contributing to the widening socioeconomic-CVD gradient. Further research into the impact of best-practice interventions for CVD upon lower SES groups is required.