904 resultados para motion-based driving simulator
Resumo:
Ninety-two strong-motion earthquake records from the California region, U.S.A., have been statistically studied using principal component analysis in terms of twelve important standardized strong-motion characteristics. The first two principal components account for about 57 per cent of the total variance. Based on these two components the earthquake records are classified into nine groups in a two-dimensional principal component plane. Also a unidimensional engineering rating scale is proposed. The procedure can be used as an objective approach for classifying and rating future earthquakes.
Resumo:
This paper describes a vision-only system for place recognition in environments that are tra- versed at different times of day, when chang- ing conditions drastically affect visual appear- ance, and at different speeds, where places aren’t visited at a consistent linear rate. The ma- jor contribution is the removal of wheel-based odometry from the previously presented algo- rithm (SMART), allowing the technique to op- erate on any camera-based device; in our case a mobile phone. While we show that the di- rect application of visual odometry to our night- time datasets does not achieve a level of perfor- mance typically needed, the VO requirements of SMART are orthogonal to typical usage: firstly only the magnitude of the velocity is required, and secondly the calculated velocity signal only needs to be repeatable in any one part of the environment over day and night cycles, but not necessarily globally consistent. Our results show that the smoothing effect of motion constraints is highly beneficial for achieving a locally consis- tent, lighting-independent velocity estimate. We also show that the advantage of our patch-based technique used previously for frame recogni- tion, surprisingly, does not transfer to VO, where SIFT demonstrates equally good performance. Nevertheless, we present the SMART system us- ing only vision, which performs sequence-base place recognition in extreme low-light condi- tions where standard 6-DOF VO fails and that improves place recognition performance over odometry-less benchmarks, approaching that of wheel odometry.
Resumo:
Fatigue and sleepiness are major causes of road traffic accidents. However, precise data is often lacking because a validated and reliable device for detecting the level of sleepiness (cf. the breathalyzer for alcohol levels) does not exist, nor does criteria for the unambiguous detection of fatigue/sleepiness as a contributing factor in accident causation. Therefore, identification of risk factors and groups might not always be easy. Furthermore, it is extremely difficult to incorporate fatigue in operationalized terms into either traffic or criminal law. The main aims of this thesis were to estimate the prevalence of fatigue problems while driving among the Finnish driving population, to explore how VALT multidisciplinary investigation teams, Finnish police, and courts recognize (and prosecute) fatigue in traffic, to identify risk factors and groups, and finally to explore the application of the Finnish Road Traffic Act (RTA), which explicitly forbids driving while tired in Article 63. Several different sources of data were used: a computerized database and the original folders of multidisciplinary teams investigating fatal accidents (VALT), the driver records database (AKE), prosecutor and court decisions, a survey of young male military conscripts, and a survey of a representative sample of the Finnish active driving population. The results show that 8-15% of fatal accidents during 1991-2001 were fatigue related, that every fifth Finnish driver has fallen asleep while driving at some point during his/her driving career, and that the Finnish police and courts punish on average one driver per day on the basis of fatigued driving (based on the data from the years 2004-2005). The main finding regarding risk factors and risk groups is that during the summer months, especially in the afternoon, the risk of falling asleep while driving is increased. Furthermore, the results indicate that those with a higher risk of falling asleep while driving are men in general, but especially young male drivers including military conscripts and the elderly during the afternoon hours and the summer in particular; professional drivers breaking the rules about duty and rest hours; and drivers with a tendency to fall asleep easily. A time-of-day pattern of sleep-related incidents was repeatedly found. It was found that VALT teams can be considered relatively reliable when assessing the role of fatigue and sleepiness in accident causation; thus, similar experts might be valuable in the court process as expert witnesses when fatigue or sleepiness are suspected to have a role in an accident’s origins. However, the application of Article 63 of the RTA that forbids, among other things, fatigued driving will continue to be an issue that deserves further attention. This should be done in the context of a needed attitude change towards driving while in a state of extreme tiredness (e.g., after being awake for more than 24 hours), which produces performance deterioration comparable to illegal intoxication (BAC around 0.1%). Regarding the well-known interactive effect of increased sleepiness and even small alcohol levels, the relatively high proportion (up to 14.5%) of Finnish drivers owning and using a breathalyzer raises some concern. This concern exists because these drivers are obviously more focused on not breaking the “magic” line of 0.05% BAC than being concerned about driving impairment, which might be much worse than they realize because of the interactive effects of increased sleepiness and even low alcohol consumption. In conclusion, there is no doubt that fatigue and sleepiness problems while driving are common among the Finnish driving population. While we wait for the invention of reliable devices for fatigue/sleepiness detection, we should invest more effort in raising public awareness about the dangerousness of fatigued driving and educate drivers about how to recognize and deal with fatigue and sleepiness when they ultimately occur.
Resumo:
Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998-99 and 1999-2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat-fallow and wheat-chickpea rotations (1987-98) were nevertheless well simulated when the soil water content in 0-0.45 m soil depth was set to 'air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH 4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985-98) in soil organic matter in wheat-fallow and wheat-chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat-chickpea rotations at Tel Hadya.
Resumo:
In the future the number of the disabled drivers requiring a special evaluation of their driving ability will increase due to the ageing population, as well as the progress of adaptive technology. This places pressure on the development of the driving evaluation system. Despite quite intensive research there is still no consensus concerning what is the factual situation in a driver evaluation (methodology), which measures should be included in an evaluation (methods), and how an evaluation has to be carried out (practise). In order to find answers to these questions we carried out empirical studies, and simultaneously elaborated upon a conceptual model for driving and a driving evaluation. The findings of empirical studies can be condensed into the following points: 1) A driving ability defined by the on-road driving test is associated with different laboratory measures depending on the study groups. Faults in the laboratory tests predicted faults in the on-road driving test in the novice group, whereas slowness in the laboratory predicted driving faults in the experienced drivers group. 2) The Parkinson study clearly showed that even an experienced clinician cannot reliably accomplish an evaluation of a disabled person’s driving ability without collaboration with other specialists. 3) The main finding of the stroke study was that the use of a multidisciplinary team as a source of information harmonises the specialists’ evaluations. 4) The patient studies demonstrated that the disabled persons themselves, as well as their spouses, are as a rule not reliable evaluators. 5) From the safety point of view, perceptible operations with the control devices are not crucial, but correct mental actions which the driver carries out with the help of the control devices are of greatest importance. 6) Personality factors including higher-order needs and motives, attitudes and a degree of self-awareness, particularly a sense of illness, are decisive when evaluating a disabled person’s driving ability. Personality is also the main source of resources concerning compensations for lower-order physical deficiencies and restrictions. From work with the conceptual model we drew the following methodological conclusions: First, the driver has to be considered as a holistic subject of the activity, as a multilevel hierarchically organised system of an organism, a temperament, an individuality, and a personality where the personality is the leading subsystem from the standpoint of safety. Second, driving as a human form of a sociopractical activity, is also a hierarchically organised dynamic system. Third, in an evaluation of driving ability it is a question of matching these two hierarchically organised structures: a subject of an activity and a proper activity. Fourth, an evaluation has to be person centred but not disease-, function- or method centred. On the basis of our study a multidisciplinary team (practitioner, driving school teacher, psychologist, occupational therapist) is recommended for use in demanding driver evaluations. Primary in a driver’s evaluations is a coherent conceptual model while concrete methods of evaluations may vary. However, the on-road test must always be performed if possible.
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
The Drunk Driving Warning System is an alcohol interlock based on performance of the Critical Tracking Task (CTT). An evaluation was undertaken to determine CTT sensitivity to blood alcohol concentration (BAC), particularly at .05 g/100 ml. Subjects were 36 males in 3 age groups (18, 21 to 25, 35 years and above) divided into 2 alcohol consumption categories ("light" and "heavy"), and scored on 4 training and 2 test days (one alcohol and one placebo). The CTT performance declined as BAC increased and was significantly impaired at .05 BAC. However, performance was too variable for in-vehicle use. Age and alcohol consumption pattern were without effect.
Resumo:
Wear resistance and recovery of 8 Bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid Bermudagrass (C. Dactylon x C. transvaalensis Burtt-Davey) cultivars grown on a sandbased soil profile near Brisbane, Australia, were assessed in 4 wear trials conducted over a two year period. Wear was applied on a 7-day or a 14-day schedule by a modified Brinkman Traffic Simulator for 6-14 weeks at a time, either during winter-early spring or during summer-early autumn. The more frequent wear under the 7-day treatment was more damaging to the turf than the 14-day wear treatment, particularly during winter when its capacity for recovery from wear was severely restricted. There were substantial differences in wear tolerance among the 8 cultivars investigated, and the wear tolerance rankings of some cultivars changed between years. Wear tolerance was associated with high shoot density, a dense stolon mat strongly rooted to the ground surface, high cell wall strength as indicated by high total cell wall content, and high levels of lignin and neutral detergent fiber. Wear tolerance was also affected by turf age, planting sod quality, and wet weather. Resistance to wear and recovery from wear are both important components of wear tolerance, but the relative importance of their contributions to overall wear tolerance varies seasonally with turf growth rate.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.
Resumo:
In response to the threat that drink drivers pose to themselves and others, drink driving programs form an important part of a suite of countermeasures used in Australia and internationally. Unlike New Zealand/Aotearoa, United States and Canada that have programs catering for their First Peoples, all Australian programs are designed for the general driver population. The aim of this study was to identify the factors that contribute to Indigenous drink driving in order to inform appropriate recommendations related to developing a community-based program for Indigenous communities. Broader drivers licensing policy recommendations are also discussed. A sample of 73 Indigenous people from Queensland and in New South Wales with one or more drink driving convictions completed a semi-structured interview regarding their drink driving behaviour. Participants were asked to disclose information regarding their drink driving history, and alcohol and drug use. If participants self-reported no longer drink driving, they were probed about what factors had assisted them to avoid further offending. Key themes which emerged to maintain drink driving include motivations to drink and drive, and belief in the ability to manage the associated risks. Factors that appeared to support others from avoiding further offending include re-connecting with culture and family support. A range of recommendations regarding delivery and content of a program for regional and remote communities as well as other policy implications are discussed.
Resumo:
Concepts of agricultural sustainability and possible roles of simulation modelling for characterising sustainability were explored by conducting, and reflecting on, a sustainability assessment of rain-fed wheat-based systems in the Middle East and North Africa region. We designed a goal-oriented, model-based framework using the cropping systems model Agricultural Production Systems sIMulator (APSIM). For the assessment, valid (rather than true or false) sustainability goals and indicators were identified for the target system. System-specific vagueness was depicted in sustainability polygons-a system property derived from highly quantitative data-and denoted using descriptive quantifiers. Diagnostic evaluations of alternative tillage practices demonstrated the utility of the framework to quantify key bio-physical and chemical constraints to sustainability. Here, we argue that sustainability is a vague, emergent system property of often wicked complexity that arises out of more fundamental elements and processes. A 'wicked concept of sustainability' acknowledges the breadth of the human experience of sustainability, which cannot be internalised in a model. To achieve socially desirable sustainability goals, our model-based approach can inform reflective evaluation processes that connect with the needs and values of agricultural decision-makers. Hence, it can help to frame meaningful discussions, from which actions might emerge.
Resumo:
An article about Jim Montag, published in: Sh’ma, a journal of Jewish responsibility, 20/394, May 11, 1990, pages 105-107.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
- Purpose Despite the importance of theory as a driving framework, many social marketers either fail to explicitly use theory as the basis of designing social marketing interventions or default to familiar theories which may not accurately reflect the nature of the behavioural issue. The purpose of this paper is therefore to propose and demonstrate the social marketing theory (SMT)-based approach for designing social marketing interventions, campaigns or tools. - Design/methodology/approach This conceptual paper proposes a four-step process and illustrates this process by applying the SMT-based approach to the digital component of a social marketing intervention for preventing domestic violence. - Findings For effective social marketing interventions, the underpinning theory must reflect consumer insights and key behavioural drivers and be used explicitly in the design process. - Practical implications Social marketing practitioners do not always understand how to use theory in the design of interventions, campaigns or tools, and scholars do not always understand how to translate theories into practice. This paper outlines a process and illustrates how theory can be selected and applied. - Originality/value This paper proposes a process for theory selection and use in a social marketing context.