989 resultados para motion processing
Resumo:
Les déficits auditifs spatiaux se produisent fréquemment après une lésion hémisphérique ; un précédent case report suggérait que la capacité explicite à reconnaître des positions sonores, comme dans la localisation des sons, peut être atteinte alors que l'utilisation implicite d'indices sonores pour la reconnaissance d'objets sonores dans un environnement bruyant reste préservée. En testant systématiquement des patients avec lésion hémisphérique inaugurale, nous avons montré que (1) l'utilisation explicite et/ou implicite des indices sonores peut être perturbée ; (2) la dissociation entre l'atteinte de l'utilisation explicite des indices sonores versus une préservation de l'utilisation implicite de ces indices est assez fréquente ; et (3) différents types de déficits dans la localisation des sons peuvent être associés avec une utilisation implicite préservée de ces indices sonores. Conceptuellement, la dissociation entre l'utilisation explicite et implicite de ces indices sonores peut illustrer la dichotomie des deux voies du système auditif. Nos résultats parlent en faveur d'une évaluation systématique des fonctions auditives spatiales dans un contexte clinique, surtout quand l'adaptation à un environnement sonore est en jeu. De plus, des études systématiques sont nécessaires afin de mettre en lien les troubles de l'utilisation explicite versus implicite de ces indices sonores avec les difficultés à effectuer les activités de la vie quotidienne, afin d'élaborer des stratégies de réhabilitation appropriées et afin de s'assurer jusqu'à quel point l'utilisation explicite et implicite des indices spatiaux peut être rééduquée à la suite d'un dommage cérébral.
Resumo:
In the mid-1940s, American film industry was on its way up to its golden era as studios started mass-producing iconic feature films. The escalating increase in popularity of Hollywood stars was actively suggested for its direct links to box office success by academics. Using data collected in 2007, this paper carries out an empirical investigation on how different factors, including star power, affect the revenue of ‘home-run’ movies in Hollywood. Due to the subjective nature of star power, two different approaches were used: (1) number of nominations and wins of Academy Awards by the key players, and (2) average lifetime gross revenue of films involving the key players preceding the sample year. It is found that number of Academy awards nominations and wins was not statistically significant in generating box office revenue, whereas star power based on the second approach was statistically significant. Other significant factors were critics’ reviews, screen coverage and top distributor, while number of Academy awards, MPAA-rating, seasonality, being a sequel and popular genre were not statistically significant.
Resumo:
Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.
Resumo:
The proprotein convertases (PCs) are a family of nine mammalian enzymes that play key roles in the maintenance of cell homeostasis by activating or inactivating proteins via limited proteolysis under temporal and spatial control. A wide range of pathogens, including major human pathogenic viruses can hijack cellular PCs for their own purposes. In particular, productive infection with many enveloped viruses critically depends on the processing of their fusion-active viral envelope glycoproteins by cellular PCs. Based on their crucial role in virus-host interaction, PCs can be important determinants for viral pathogenesis and represent promising targets of therapeutic antiviral intervention. In the present review we will cover basic aspects and recent developments of PC-mediated maturation of viral envelope glycoproteins of selected medically important viruses. The molecular mechanisms underlying the recognition of PCs by viral glycoproteins will be described, including recent findings demonstrating differential PC-recognition of viral and cellular substrates. We will further discuss a possible scenario how viruses during co-evolution with their hosts adapted their glycoproteins to modulate the activity of cellular PCs for their own benefit and discuss the consequences for virus-host interaction and pathogenesis. Particular attention will be given to past and current efforts to evaluate cellular PCs as targets for antiviral therapeutic intervention, with emphasis on emerging highly pathogenic viruses for which no efficacious drugs or vaccines are currently available.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Merozoite surface protein-1 (MSP-1, also referred to as P195, PMMSA or MSA 1) is one of the most studied of all malaria proteins. The proteins. The protein is found in all malaria species investigated and structural studies on the gene indicate that parts of the molecule are well-conserved. Studies on Plasmodium falciparum have shown that the protein is in a processed form on the merozoite surface, a result of proteolytic cleavage of the large percursor molecule. Recent studies have identified some of these cleavage sites. During invasion of the new red cell most of the MSP1 molecule is shed from the parasite surface except for a small C-terminal fragment which can be detected in ring stages. Analysis of the structure of this fragment suggests that it contains two growth factor-like domains that may have a functional role.
Resumo:
Aquest projecte presenta el disseny, construcció i programació d’un robot autònom, com a base per una proposta educativa. Per aconseguir aquest objectiu s’ha dotat el robot d’una unitat de procés, un sistema de locomoció i un seguit de sensors que proporcionaran a la unitat informació respecte l’entorn. Per gestionar totes aquestes funcionalitats, s’ha fet servir un sistema operatiu en temps real capaç de gestionar amb efectivitat les tasques que puguin ser executades pel robot. Finalment, s’ha exposat una detallada descripció dels costos per una producció de volum mig i de caire merament educatiu.
Resumo:
We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.
Resumo:
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.
Resumo:
INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.