910 resultados para morphological plasticity
Resumo:
The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.
Resumo:
This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 mu m were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The morphology of a novel poly(aryl ether ketone) [PEDEKmK] was investigated via polarizing optical microscopy (POM), TEM, DSC, SAXS and electron diffraction (ED). A distinct change in lamellar thickness, orientation, and spherulitic morphology was observed due to crystal melting and recrystallization. However, the crystal packing mode is found to be identical before and after the recrystallization process.
Resumo:
Both MI and MII triploids were successfully produced by heat shock in Chinese shrimp Fenneropenaeus chinensis. The inducing conditions for MI and MII triploids were optimized. The highest inducing rate obtained for MI triploids reached more than 90%, and that for MII triploids reached nearly 100% at the nauplius stage as evaluated using flow cytometry. Comparisons of survival rates at larval stages between triploids and diploids or diploids experiencing treatment and diploids without treatment were performed. At larval stage from nauplii to postlarvae, heat shocks lowered survival at larval stages even if the ploidy was not changed. Ploidy did not affect shrimp larvae survival, and no significant difference was found in the survival of shrimp larvae between MI and MII triploids. Highly significant differences were observed in the morphology of triploids and diploids, and no apparent difference was found in the morphology of MI and MII triploids at the grow-out stages. Discriminating formulae for triploid and diploid shrimp at grow-out stage were developed and could be used to distinguish triploids from diploids based on morphological parameters. MI and MII triploids of shrimp have the potential to be used in aquaculture.
Resumo:
Species in Liangzi Lake were clustered into four trophic groups: Hemiramphus kurumeus and Hemiculter bleekeri bleekeri fed predominantly on terrestrial insects; Carassius auratus auratus and Abbottina rivularis on non-animal food; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva and Toxabramis swinhonis on cladocerans or copepods; Culterichthys erythropterus on decapod shrimps. Gut length, mouth width, mouth height, gill raker length and gill raker spacing, varied widely among species. With the exception of three species pairs (H. swinhonis, C. glurinus; C. erythropterus, H. kurumeus; T. swinhonis, H. bleekeri bleekeri), principal components analysis of morphological variables revealed over-dispersion of species. Canonical correspondence analysis of dietary and morphological data revealed five significant dietary-morphological correlations. The first three roots explained > 85% of the total variance. The first root reflected mainly the relationship of gut length to non-animal feud, with an increase in gut length associated with an increase in non-animal food. The second root was influenced strongly by the relationship of the gill raker spacing to consumption of copepods, with an increase in gill raker spacing associated positively with copepods in the diet. The third root was influenced by the relationship of mouth gape to consumption of fish and decapod shrimps, with an increase in mouth gape associated with more fish and decapod shrimps in the diet. These significant dietary-morphological relationships supported the eco-morphological hypotheses that fish morphology influence food use, and morphological variation is important in determining ecological segregation of co-existing fish species. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
A Gymnodinium-like species was studied with light microscopy (LM) and scanning electron microscopy (SEM). Also, the internal transcribed spacers (containing 5.8S rDNA) and large ribosomal subunit DNA (D1-D2) sequences were obtained by PCR amplification, and then sequenced to explore the relationships within our isolate, Gymnodinium and other Gymnodinium-like species, including Karenia, Gyrodinium, Karlodinium and Symbiodinium. The LM observation showed that the species was characterized by moving in a levorotatory direction, visible hypocone, epicone and transverse groove, all of which are typical for Gymnodinium. In addition, two flagella could be found under SEM. The phylogenetic analysis revealed that the isolate grouped with Symbiodium, rather than other relevant dinoflagellates. All results showed our isolate belongs to Symbiodium. The strain was isolated from a red tide water sample, denoting that Symbiodium may be causative species for algal bloom.
Resumo:
The taxonomic characterization of two strains of Antarctic ice algae, Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W, were analyzed on the basis of morphological and molecular traits. The results indicate that they are the same species and belong to Chlamydomonas (Chlorophyta). According to I SS rDNA and ITS-I sequences they are very close relatives of Chlamydomonas sp. Antarctic 2E9, if not identified as such. They belong to the 'monadina clade', Cd. monadina and Cm. subdivisa as the sister group, on the basis of 18S rDNA sequence. They occur in 'Chlamydomonas clade' according to rbcL sequencing and are close relatives of Cd. kuwadae. The ITS sequences of ICE-L and ICE-W are 1302 base pairs and 1300 base pairs in length, the longest Volvocales ITS sequences ever reported.
Resumo:
The morphology of the beach backshore and foreshore at Huiquan Bay, Qingdao, China, is characterized by a single intertidal sandbar system with a spring tide range of 4.59 m. The beach was measured with a laser total station of Leica TPS402. Contours of the beach were generated using data collected in March and November 2005. The survey method provided 2 mm measuring accuracy and 4-10 m horizontal spacing. The net accretion volume of the foreshore was about 11, 215 m(3) from March to November. After sand sculpture activity, the axis of the sand trough migrated onshore from about 3.5 m to 17.5 m on the foreshore beach in November. At the same time, the axis of the sandbar crest migrated onshore no more than 42.25 m on the northwest foreshore; and it migrated offshore no more than 23.75 m on the southeast foreshore. On the northwest and southeast foreshore beach, two strips of erosion areas with a thickness of 0-0.2 m appeared on the sandbar crest. Accretion occurred at the bottom of the sand trough with a thickness of similar to 0.2-0.6 m. The sandbar height decreased after sand sculpture activity, and it was no more than 0.7 m in March and 0.6 m in November. Human activities, such as sand digging on the sandbar crest during sand sculpture activity, also can disturb the beach morphology of intertidal bar systems. This phenomenon also was validated by comparison of beach morphology, the results of a color artificial tracer experiment and a sediment transportation trend prediction.
Resumo:
The coelomocytes suspended in the coelomic fluid and occurring in the coelomic epithelial layer of the sea cucumber Apostichopus japonicus (Selenka) (Holothuroidea: Aspidochirota: Stichopodidae) function as mediators of the immune system, trephocytic cells and nutrient transport cells. Types of coelomocytes are characterized based on their morphological and ultrastructural features. Flow cytometry plus light and electron microscopic analyses were conducted in order to characterize the coelomocytes of A. japonicus. Six types of coelomocytes were identified: lymphocytes, morula cells, amoebocytes, crystal cells, fusiform cells and vibratile cells. Within these major categories, several distinctive cell types occurred that might represent developmental stages. The mean +/- SD coelomocyte concentration in the individuals (body length: 10 to 15 cm; weight: 100 to 150 g) was (3.79 +/- 0.65) X 10(6) cells ml(-1). The coelomic fluid contained mainly hyalinocytes (76.69%) and granulocytes (23.31 %).
Resumo:
We investigated the effects of the timing of first feeding (larvae in F0, F1, F2, F3 and S were first fed on day 3, 4, 5, 6 days after hatching (DAH) and unfed, respectively) on feeding, morphological changes, survival and growth in miiuy croaker larvae at 24A degrees C. The fed larvae initiated feeding on 3 DAH and reached point of no return (PNR) on 6 DAH. Larvae in F0 and F1 groups survived apparently better than F2 group at the end of the experiment on 36 DAH. High larval mortality occurred from 3 to 7 DAH in all feeding groups, accounting for 40% (F0, F1 and F2 groups) to 90% (F3 and S groups) of the total mortality. Larvae in F0 and F1 groups grew better than F2 group throughout the experiment. Eye diameter, body height, head height and mouth gape of the first feeding larvae were more sensitive to starvation than other morphometrics and could be used as indicators for evaluating their nutritional status. Results indicated that delayed first feeding over 1 day after yolk exhaustion could lead to poor larval survival and growth. To avoid starvation and obtain good growth in culturing, larvae feeding should be initiated within 1 day after yolk exhaustion at 24A degrees C.
Resumo:
In this paper, the detailed morphology of Prorocentrum donghaiense Lu from both field samples and cultures was examined, and a taxonomic comparison was made between P donghaiense and some related Prorocentrum spp. using morphological and molecular data and other published information. There were distinct differences among these species in morphological characteristics that historically have been presented as conservative features. The discrepancies extended beyond that of individual variations within the same species due to environmental factors. Therefore, these morphological features may not be conservative but, rather, polymorphic depending on environmental conditions. Based on this analysis, we suggest that the high-biomass bloom-forming species in the East China Sea, previously reported as Prorocentrum dentatum Stein, is P donghaiense Lu. The species reported from the East China Sea and Japanese and Korean waters appear to be the same species. Molecular data also suggest that P. dentatum (CCMP1517) and P. donghaiense are genetically identical. Therefore, the geographic distribution of P. donghaiense may be much wider than expected. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Japanese flounder Paralichthys olivaceus larvae established first feeding 3 days after hatching (DAH) at c. 17degreesC. Non-fed fish reached irreversible starvation at age 5 DAH. Non-fed fish showed similar feeding rate and feeding intensity as the fed fish when they were provided with prey before 5 DAH, after which the starved larvae did not feed even when prey became available. None of the six morphological measurements examined (total length, body height, eye height, head height, gut height and myotome height) showed significant differences between the non-fed and fed larvae until 5 DAH. Normal development continued only in the fed group, and the non-fed larvae showed reverse growth or body collapse after 5 DAH. Owing to the shrinkage and collapse at the top of head due to starvation, head height could be a sensitive indicator of starvation in Japanese flounder larvae. In the fed treatments, high mortality occurred from first feeding (3 DAH) to irreversible starvation (5 DAH), accounting for about two-thirds to three-quarters of the overall mortality (46-52%) throughout the experiments. This mortality was not prey density or larval density dependent. Mortality during the same period in the non-fed larvae accounted for about a third of the overall mortality (100%). (C) 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Understanding the effect on host plants of defending against herbivores is important in grazing ecology and grassland management. In this study, the morphological and reproductive responses of Caragana microphylla Lam. to grazing sheep were investigated using a 15-year grazing experiment with six stocking rates in the Inner Mongolia steppe of China. Plant height, rachis length, leaflet size, and number of pods decreased significantly, whereas spine density and length increased significantly with increased stocking rate. Significant negative correlations were observed between production of vegetative and reproductive organs and defensive organs, indicating that it is costly for C. microphylla to defend against herbivores and that morphological miniaturization and a tradeoff between production and defense were main responses of C. microphylla to herbivores. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
D Le Messurier, R Winter, CM Martin; J Appl Cryst 39 (2006) 589 Sponsorship: EPSRC, CCLRC, Pilkington