973 resultados para molecular biochemical characterisation
Resumo:
Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^
Resumo:
The nineteenth symposium was held at the University of Missouri–Columbia on April 22, 1989. A total of eighteen papers were scheduled for presentation, of which nine were in poster session. Finally, fifteen papers were presented and sixteen were submitted for this proceedings. It was attended by 53 participants from five institutions. A sixth group (from Colorado State University) was kept from attending the symposium due to mechanical problems on the road and we missed them. Since they worked hard at their presentations, I requested CSU-group to submit their papers for the proceedings and I am happy that they did. ContentsMathematical modelling of a flour milling system. K. Takahashi, Y. Chen, J. Hosokoschi, and L. T. Fan. Kansas State University A novel solution to the problem of plasmid segregation in continuous bacterial fermentations. K.L. Henry, R. H. Davis, and A. L. Taylor. University of Colorado Modelling of embryonic growth in avian and reptile Eggs. C.L. Krause, R. C. Seagrave, and R. A. Ackerman. Iowa State University Mathematical modeling of in situ biodegradation processes. J.C. Wu, L. T. Fan, and L. E. Erickson. Kansas State University Effect of molecular changes on starch viscosity. C.H. Rosane and V. G. Murphy. Colorado State University Analysis of two stage recombinant bacterial fermentations using a structured kinetic model. F. Miao and D. S. Kampala. University of Colorado Lactic acid fermentation from enzyme-thinned starch by Lactobacillus amylovorus. P.S. Cheng, E. L. Iannotti, R. K. Bajpai, R. Mueller, and s. Yaeger. University of Missouri–Columbia Solubilization of preoxidized Texas lignite by cell-free broths of Penicillium strains. R. Moolick, M. N. Karim, J. C. Linden, and B. L. Burback. Colorado State University Separation of proteins from polyelectrolytes by ultrafiltration. A.G. Bazzano and C. E. Glatz. Iowa State University Growth estimation and modelling of Rhizopus oligosporus in solid state fermentations. D.-H. Ryoo, V. G. Murphy, M. N. Karim, and R. P. Tengerdy. Colorado State University Simulation of ethanol fermentations from sugars in cheese whey. C.J. Wang and R. K. Bajpai. University of Missouri–Columbia Studies on protoplast fusion of B. licheniformis. B. Shi, Kansas State University Cell separations of non-dividing and dividing yeasts using an inclined settler. C.-Y. Lee, R. H. Davis, and R. A. Sclafani. University of Colorado Effect of·serum upon local hydrodynamics within an airlift column. G.T. Jones, L. E. Erickson, and L. A. Glasgow. Kansas State University Optimization of heterologous protein secretion in continuous culture. A. Chatterjee, W. F. Remirez, and R. H. Davis. University of Colorado An improved model for lactic acid fermentation. P. Yeh, R. K. Bajpai, and E. L. Iannotti. University of Missouri–Columbia
Resumo:
This is the twenty-second of a series of symposia devoted to talks and posters by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, sixteenth, and twenti~th were hosted by Kansas State University, the second and fourth by the University of Nebraska- Lincoln, the sixth, seventh, tenth, thirteenth, seventeenth, and twenty-second by Iowa State University, the eighth, fourteenth, and nineteenth by the University of Missouri-Columbia, the eleventh, fifteenth, and twenty-first by Colorado State University, and the eighteenth by the University of Colorado. Next year's symposium will be at the University of Oklahoma. Symposium proceedings are edited and issued by faculty of the host institution. Because final publication usually takes place in refereed journals, articles included here are brief and often cover work in progress. ContentsC. A. Baldwin, J.P. McDonald, and L. E. Erickson, Kansas State University. Effect of Hydrocarbon Phase on Kinetic and Transport Limitations for Bioremediation of Microporous Soil J. C. Wang, S. K. Banerji, and Rakesh Bajpai, University of Missouri-Columbia. Migration of PCP in Soil-Columns in Presence of a Second Organic Phase Cheng-Hsien Hsu and Roger G. Harrison, University of Oklahoma. Bacterial Leaching of Zinc and Copper from Mining Wastes James A. Searles, Paul Todd, and Dhinakar S. Kompala, University of Colorado. Suspension Culture of Chinese Hamster Ovary Cells Utilizing Inclined Sedimentation Ron Beyerinck and Eric H. Dunlop, Colorado State University. The Effect of Feed Zone Turbulence as Measured by Laser Doppler Velocimetry on Baker's Yeast Metabolism in a Chemostat Paul Li-Hong Yeh, GraceY. Sun, Gary A. Weisman, and Rakesh Bajpai, University of Missouri-Columbia. Effect of Medium Constituents upon Membrane Composition of Insect Cells R. Shane Gold, M. M. Meagher, R. Hutkins, and T. Conway, University of Nebraska-Lincoin. Ethanol Tolerance and Carbohydrate Metabolism in Lactobacilli John Sargantanis and M. N. Karim, Colorado State University. Application of Kalman Filter and Adaptive Control in Solid Substrate Fermentation D. Vrana, M. Meagher, and R. Hutkins, University of Nebraska-Lincoln. Product Recovery Optimization in the ABE Fermentation Kalyan R. Tadikonda and Robert H. Davis, University of Colorado. Cell Separations Using Targeted Monoclonal Antibodies Against Surface Proteins Meng H. Heng and Charles E. Glatz, Iowa State University. Charged Fusion for Selective Recovery of B-Galactosidase from Cell Extract Using Hollow Fiber Ion-Exchange Membrane Adsorption Hsiu-Mei Chen, Peter J. Reilly, and Clark Ford, Iowa State University. Site-Directed Mutagenesis to Enhance Thermostability of Glucoamylase from Aspergillus: A Rational Approach P. Tuitemwong, L. E. Erickson, and D. Y. C. Fung, Kansas State University. Applications of Enzymatic Hydrolysis and Fermentation on the Reduction of Flatulent Sugars in the Rapid Hydration Hydrothermal Cooked Soy Milk Sanjeev Redkar and Robert H. Davis, University of Colorado. Crossflow Microfiltration of Yeast Suspensions Linda Henk and James C. Linden, Colorado State University, and Irving C. Anderson, Iowa State University. Evaluation of Sorghum Ensilage as an Ethanol Feedstock Marc Lipovitch and James C. Linden, Colorado State University. Stability and Biomass Feedstock Pretreatability for Simultaneous Saccharification and Fermentation Ali Demirci, Anthony L. Pometto Ill, and Kenneth E. Johnson, Iowa State University. Application of Biofilm Reactors in Lactic Acid Fermentation Michael K. Dowd, Peter I. Reilly, and WalterS. Trahanovsky, Iowa State University. Low Molecular-Weight Organic Composition of Ethanol Stillage from Corn Craig E. Forney, Meng H. Heng, John R. Luther, Mark Q. Niederauer, and Charles E. Glatz, Iowa State University. Enhancement of Protein Separation Using Genetic Engineering J. F. Shimp, J. C. Tracy, E. Lee, L. C. Davis, and L. E. Erickson, Kansas State University. Modeling Contaminant Transport, Biodegradation and Uptake by Plants in the Rhizosphere Xiaoqing Yang, L. E. Erickson, and L. T. Fan, Kansas State University. Modeling of Dispersive-Convective Characteristics in Bioremediation of Contaminated Soil Jan Johansson and Rakesh Bajpai, University of Missouri-Columbia. Fouling of Membranes J. M. Wang, S. K. Banerji, and R. K. Bajpai, University of Missouri-Columbia. Migration of Sodium-Pentachorophenol (Na-PCP) in Unsaturated and Saturated Soil-Columns J. Sweeney and M. Meagher, University of Nebraska-Lincoln. The Purification of Alpha-D-Glucuronidase from Trichoderma reesei
Resumo:
The 24th Biochemical Engineering Symposium was held 9-10 September 1994 at the YMCA of the Rockies conference center in Estes Park, Colorado, under the sponsorship of the Department of Chemical Engineering at the University of Colorado. Previous symposia in this series have been hosted by Kansas State University (1st, 3rd, 5th, 9th, 12th, 16th, 20th), University of Nebraska-Lincoln (2nd, 4th), Iowa State University (6th, 7th, 10th, 13th, 17th, 22nd), University of Missouri-Columbia (8th, 14th, 19th), Colorado State University (11th, 15th, 21st), University of Colorado (18th), and the University of Oklahoma (23rd). The next symposium is scheduled to be held at the University of Missouri-Columbia. The symposia are devoted to talks by students about their ongoing research. Because final publication usually takes place elsewhere, the papers included in the proceedings are brief, and often cover work in progress. ContentsIn-Well Aeration: An Innovative Subsurface Remediation TechnologyPrashant Gandhi, X. Yang, L.E. Erickson, and L. T. Fan; Kansas State University Expression of an Antimicrobial Peptide Analog in Eacherlchill coliChris Haught and Roger G. Harrison; University of Oklahoma Using High-frequency Backpulaing to Maximize Croasflow Filtration PerformanceSanjeev G. Redkar and Robert H. Davis; University of Colorado Low Molecular Weight Organic Compositions of Acid Waters from Vegetable Oil SoapstocksSteven L. Johansen, Arunthathi Sivasothy, Peter J. Reilly, and Earl G. Hammond; Iowa State University; Michael K. Dowd; U.S. Department of Agriculture Gas Phase Composition Effects on Suspension Cultures of Taxus cuspidata Noushin Mirjalili and James C. Linden; Colorado State University Cybernetic Modeling of Spontaneous Oscillations in Continuous Cultures of Ssccharomyces cerevisiaeKenneth D. Jones and Dhinakar S. Kompala; University of Colorado The Effect of Turbulent Shear on Calcium Mobilization in Mammalian CellsChristopher M. Cannizzaro, Pradyumna K. Namdev, and Eric H. Dunlop; Colorado State University Experimental Studies of Droplet Ejection at the Free Surface In Sparged ReactorsT. Y. Yiin, L A. Glasgow, and L. E. Erickson; Kansas State University The Role of Domain E (Starch-Binding Region) on the Activity of a Bacillus macersns Cyclodextrln GlucanotransferaseHai-yin Chang, Trang Le, and Zivko L. Nikolov; Iowa State University Use of the Rotating Wall Vessel for Study of Plant Cell Suspension CulturesXinzhi Sun and James C. Linden; Colorado State University A Novel Counter-Current Distribution Apparatus for the Study of Multi-Stage Aqueous Two-Phase Extraction of Biomolecules and Cell ParticlesMartin R. Guinn and Paul Todd; University of Colorado The Dynamics of Unhooking and Contraction of a Polyelectrolyte Chain Around an Isolated PostLin Zhang and Edith M. Sevick; University of Colorado A Laboratory Study of the Fate of Trichloroathylene and 1,1,1-Trlchloroathane In the Presence of Alfalfa PlantsMuralidharan Narayanan, Ryan M. Green, Lawrence C. Davis, and Larry E. Erickson; Kansas State University Modeling the Fate of Pyrene In the RhIzosphereS.K. Santharam, LE. Erickson, and L. T. Fan; Kansas State University Derivatization of MaltooligosaccharidesDaniela Prinz, Peter J. Reilly, and Zivko L. Nikolov; Iowa State University Probing Surfactant-Protein Binding by EPA SpectroscopyNarendra B. Bam, Yale University; Theodore W. Randolph; University of Colorado Optimization of a Stir-Cell Bioreactor for In Vitro Production of RNANeal T. Williams, Kim A. Wicklund, and Robert H. Davis; University of Colorado
Resumo:
Collaborative efforts between the Neutronics and Target Design Group at the Instituto de Fusión Nuclear and the Molecular Spectroscopy Group at the ISIS Pulsed Neutron and Muon Source date back to 2012 in the context of the ESS-Bilbao project. The rationale for these joint activities was twofold, namely: to assess the realm of applicability of the low-energy neutron source proposed by ESS-Bilbao - for details; and to explore instrument capabilities for pulsed-neutron techniques in the range 0.05-3 ms, a time range where ESS-Bilbao and ISIS could offer a significant degree of synergy and complementarity. As part of this collaboration, J.P. de Vicente has spent a three-month period within the ISIS Molecular Spectroscopy Group, to gain hands-on experience on the practical aspects of neutron-instrument design and the requisite neutron-transport simulations. To date, these activities have resulted in a joint MEng thesis as well as a number of publications and contributions to national and international conferences. Building upon these previous works, the primary aim of this report is to provide a self-contained discussion of general criteria for instrument selection at ESS-Bilbao, the first accelerator-driven, low-energy neutron source designed in Spain. To this end, Chapter 1 provides a brief overview of the current design parameters of the accelerator and target station. Neutron moderation is covered in Chapter 2, where we take a closer look at two possible target-moderator-reflector configurations and pay special attention to the spectral and temporal characteristics of the resulting neutron pulses. This discussion provides a necessary starting point to assess the operation of ESSB in short- and long-pulse modes. These considerations are further explored in Chapter 3, dealing with the primary characteristics of ESS-Bilbao as a short- or long-pulse facility in terms of accessible dynamic range and spectral resolution. Other practical aspects including background suppression and the use of fast choppers are also discussed. The guiding principles introduced in the first three chapters are put to use in Chapter 4 where we analyse in some detail the capabilities of a small-angle scattering instrument, as well as how specific scientific requirements can be mapped onto the optimal use of ESS-Bilbao for condensed-matter research. Part 2 of the report contains additional supporting documentation, including a description of the ESSB McStas component, a detailed characterisation of moderator response and neutron pulses, and estimates ofparameters associated with the design and operation of neutron choppers. In closing this brief foreword, we wish to thank both ESS-Bilbao and ISIS for their continuing encouragement and support along the way.
Resumo:
Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function.
Resumo:
Differential expression of surface markers can frequently be used to distinguish functional subsets of T cells, yet a surface phenotype unique to T cells induced into an anergic state has not been described. Here, we report that CD4 T cells rendered anergic in vivo by superantigen can be identified by loss of the 6C10 T cell marker. Inoculation of Vβ8.1 T cell antigen receptor (TCR) transgenic mice with a Vβ8.1-reactive minor lymphocyte-stimulating superantigen (Mls-1a) induces tolerance to Mls-1a by clonal anergy. CD4 lymph node T cells from Mls-1a inoculated transgenic mice enriched for the 6C10− phenotype neither proliferate nor produce interleukin-2 upon TCR engagement, whereas 6C10+ CD4 T cells retain responsiveness. Analysis of T cell memory markers demonstrate that 6C10− T cells remain 3G11hi but express heterogeneous levels of CD45RB, CD62L, CD44, and the CD69 early activation marker, suggesting that T cells at various degrees of activation can be functionally anergic. These studies demonstrate that anergic T cells can be purified based on 6C10 expression permitting examination of issues concerning biochemical and biological features specific to T cell anergy.
Resumo:
An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.
Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6
Resumo:
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. In this paper, we devised a procedure for purifying eIF6 from rabbit reticulocyte lysates and immunochemically characterized the protein by using antibodies isolated from egg yolks of laying hens immunized with rabbit eIF6. By using these monospecific antibodies, a 1.096-kb human cDNA that encodes an eIF6 of 245 amino acids (calculated Mr 26,558) has been cloned and expressed in Escherichia coli. The purified recombinant human protein exhibits biochemical properties that are similar to eIF6 isolated from mammalian cell extracts. Database searches identified amino acid sequences from Saccharomyces cerevisiae, Drosophila, and the nematode Caenorhabditis elegans with significant identity to the deduced amino acid sequence of human eIF6, suggesting the presence of homologues of human eIF6 in these organisms.
Resumo:
We report the identification and molecular characterization of a novel type of constitutive nuclear protein that is present in diverse vertebrate species, from Xenopus laevis to human. The cDNA-deduced amino acid sequence of the Xenopus protein defines a polypeptide of a calculated mass of 146.2 kDa and a isoelectric point of 6.8, with a conspicuous domain enriched in the dipeptide TP (threonine-proline) near its amino terminus. Immunolocalization studies in cultured cells and tissues sections of different origin revealed an exclusive nuclear localization of the protein. The protein is diffusely distributed in the nucleoplasm but concentrated in nuclear speckles, which represent a subnuclear compartment enriched in small nuclear ribonucleoprotein particles and other splicing factors, as confirmed by colocalization with certain splicing factors and Sm proteins. During mitosis, when transcription and splicing are downregulated, the protein is released from the nuclear speckles and transiently dispersed throughout the cytoplasm. Biochemical experiments have shown that the protein is recovered in a ∼12S complex, and gel filtration studies confirm that the protein is part of a large particle. Immunoprecipitation and Western blot analysis of chromatographic fractions enriched in human U2 small nuclear ribonucleoprotein particles of distinct sizes (12S, 15S, and 17S), reflecting their variable association with splicing factors SF3a and SF3b, strongly suggests that the 146-kDa protein reported here is a constituent of the SF3b complex.
Resumo:
A network of interacting proteins has been found that can account for the spontaneous oscillations in adenylyl cyclase activity that are observed in homogenous populations of Dictyostelium cells 4 h after the initiation of development. Previous biochemical assays have shown that when extracellular adenosine 3′,5′-cyclic monophosphate (cAMP) binds to the surface receptor CAR1, adenylyl cyclase and the MAP kinase ERK2 are transiently activated. A rise in the internal concentration of cAMP activates protein kinase A such that it inhibits ERK2 and leads to a loss-of-ligand binding by CAR1. ERK2 phosphorylates the cAMP phosphodiesterase REG A that reduces the internal concentration of cAMP. A secreted phosphodiesterase reduces external cAMP concentrations between pulses. Numerical solutions to a series of nonlinear differential equations describing these activities faithfully account for the observed periodic changes in cAMP. The activity of each of the components is necessary for the network to generate oscillatory behavior; however, the model is robust in that 25-fold changes in the kinetic constants linking the activities have only minor effects on the predicted frequency. Moreover, constant high levels of external cAMP lead to attenuation, whereas a brief pulse of cAMP can advance or delay the phase such that interacting cells become entrained.
Resumo:
Ocular cicatricial pemphigoid (OCP) is an autoimmune disease that affects mainly conjunctiva and other squamous epithelia. OCP is histologically characterized by a separation of the epithelium from underlying tissues within the basement membrane zone. Immunopathological studies demonstrate the deposition of anti-basement membrane zone autoantibodies in vivo. Purified IgG from sera of patients with active OCP identified a cDNA clone from a human keratinocyte cDNA library that had complete homology with the cytoplasmic domain of β4-integrin. The sera recognized a 205-kDa protein in human epidermal, human conjunctiva, and tumor cell lysates that was identified as β4-integrin by its reaction with polyclonal and monoclonal antibodies to human β4-integrin. Sera from patients with bullous pemphigoid, pemphigus vulgaris, and cicatricial pemphigoid-like diseases did not recognize the 205-kDa protein, indicating the specificity of the binding. These data strongly implicate a role for human β4-integrin in the pathogenesis of OCP. It should be emphasized that multiple antigens in the basement membrane zone of squamous epithelia may serve as targets for a wide spectrum of autoantibodies observed in vesiculobullous diseases. Molecular definition of these autoantigens will facilitate the classification and characterization of subsets of cicatricial pemphigoid and help distinguishing them from bullous pemphigoid. This study highlights the function and importance of β4-integrin in maintaining the attachment of epithelial cells to the basement membrane.
Resumo:
Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms’ predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-Å resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.
Resumo:
Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaK mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.
Resumo:
The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359–1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5.