885 resultados para modified starch
Resumo:
A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin) instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test). In this study, the serum titers (values between 1.0 and 19.5 IU) measured by a modified TOBI test (Modi-TOBI test) and toxin neutralization assays were correlated (P < 0.0001). Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001) and for diphtheria (r² = 0.93, P < 0.0001) between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels.
Resumo:
The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.
Resumo:
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(8,172) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(2,44) = 7.6884, P < 0.001), 3rd (F(2,44) = 21.481, P < 0.00001) and 4th trials (F(2,44) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).
Resumo:
The purpose of the present study was to explore the usefulness of the Mexican sequential organ failure assessment (MEXSOFA) score for assessing the risk of mortality for critically ill patients in the ICU. A total of 232 consecutive patients admitted to an ICU were included in the study. The MEXSOFA was calculated using the original SOFA scoring system with two modifications: the PaO2/FiO2 ratio was replaced with the SpO2/FiO2 ratio, and the evaluation of neurologic dysfunction was excluded. The ICU mortality rate was 20.2%. Patients with an initial MEXSOFA score of 9 points or less calculated during the first 24 h after admission to the ICU had a mortality rate of 14.8%, while those with an initial MEXSOFA score of 10 points or more had a mortality rate of 40%. The MEXSOFA score at 48 h was also associated with mortality: patients with a score of 9 points or less had a mortality rate of 14.1%, while those with a score of 10 points or more had a mortality rate of 50%. In a multivariate analysis, only the MEXSOFA score at 48 h was an independent predictor for in-ICU death with an OR = 1.35 (95%CI = 1.14-1.59, P < 0.001). The SOFA and MEXSOFA scores calculated 24 h after admission to the ICU demonstrated a good level of discrimination for predicting the in-ICU mortality risk in critically ill patients. The MEXSOFA score at 48 h was an independent predictor of death; with each 1-point increase, the odds of death increased by 35%.
Resumo:
Organic acids are present in sour cassava starch ("polvilho azedo") and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC) analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g), acetic (0 to 0.068 g/100g), propionic (0 to 0.013 g/100g) and butyric (0 to 0.057 g/100g), that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.
Resumo:
The high demands for sugars and the development of enzymatic technology have increased the production of sweeteners, especially for glucose and fructose syrups. This work describe a technology for glucose and fructose syrups from Brazilian cassava starch using enzymes produced by soil microrganisms isolated from the Brazilian Cerrado soil. Firstly, Aspergillus niger and Streptomyces sp. were isolated from the soil and used as glucoamylase (GA) and glucose isomerase (GI) producer sources. After characterization, GA and GI exhibited optimum pH 4.5 and 8.0, respectively. GA showed maximum activity at 60 ºC and GI at 85 ºC. GA and GI retained 65 and 80%, respectively, of initial activity after 180 minutes of incubation at 60 ºC. The kinetic parameters Km and Vmáx were 0.476 (mg.mL-1) and 8.58 (µmol/minute) for GA and 0.082 (M) and 48.20 (µmol/minute) for GI. The maximum glucose syrups production occurred after 24 hours of reaction with a 98% yield. The production of fructose syrups with 42% (w/v) was reached after 96 hours of reaction.
Resumo:
The aim of this experiment was to evaluate how susceptible spores become to mechanical damage during food extrusion after being submitted to CO2. B. stearothermophilus spores sowed to corn and soy mix were submitted to 99% CO2 for 10 days and extruded in a single-screw extruder. The treatments were: T1 - spore-containing samples, extruded at screw rotational speed of 65 rpm and barrel wall temperature of 80 °C; T2 - as T1, except for screw rotational speed of 150 rpm; and T3 - as T2, except that samples were submitted to the modified atmosphere. The results for cell viability, minimum and maximum residence times, and static pressure were T1 - 19.90 ± 3.24%, 123.3 ± 14.50 seconds; 203.3 ± 14.05 seconds; 2.217 ± 62 kPa; T2 - 21.42 ± 8.24%, 70.00 ± 5.77 seconds; 170.00 ± 4.67 seconds; 2.310 ± 107 kPa; and T3 - 11.06 ± 2.46%, 86.00 ± 7.23 seconds; 186.00 ± 7.50 seconds; 2.403 ± 93 kPa, respectively. It was concluded that the extrusion process did reduce the cell count. However, screw rotational speed variation or CO2 pre-treatment did not affect cell viability.
Resumo:
Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.
Resumo:
Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.
Resumo:
This study aimed to develop sensory acceptable, high nutritional value fish crackers that could be kept at room temperature for 180 days. Minced fish of different low-value species was the raw material employed to produce two types of fish crackers: a) the traditional keropok cracker, which was expanded by deep frying; and b) a low-fat fish cracker, expanded by microwave cooking. The protein content of the fried fish crackers (FFCs) and that of the microwaved fish crackers (MFCs) were high (10.86 and 14.70%, respectively). The essential amino acid contents of the two types of fish cracker were above the FAO requirements for adults, and the lysine content was above the requirements for children. Sensory analysis, performed by adult panelists, resulted in a general level of acceptability of 90% for the MFCs and of 97% for the FFCs. Vacuum packaging maintained microbiological and physicochemical properties for a storage period of 180 days at room temperature.
Resumo:
Given the debate generated by Genetically Modified (GM) foods in developed and developing countries, the aim was to evaluate the importance of determining factors in the preference of consumers in Temuco and Talca in central-southern Chile for GM foods using conjoint analysis and to determine the existence of different market segments using a survey of 800 people. Using conjoint analysis, it was established that, in general, genetic modification was a more important factor than either brand or price in the consumer's decision to purchase either food. Cluster analysis identified three segments: the largest (51.4%) assigned greatest importance to brand and preferred genetically modified milk and tomato sauce; the second group (41.0%) gave greatest importance to the existence of genetic manipulation and preferred non-genetically modified foods; the smallest segment (7.6%) mainly valued price and preferred milk and tomato sauce with no genetic manipulation. The three segments rejected the store brand and preferred to pay less for both foods. The results are discussed based on studies conducted in developed and developing countries.
Resumo:
The purpose of this study was to evaluate changes in the structure and some functional properties of biofilms added with modified clays (Cloisite® 15A and Cloisite® 30B) prepared by the casting method. The analysis of the microstructure of the films, scanning electron microscopy (SEM), Optical microscopy (MO), and Infrared Spectroscopy (FTIR) indicated that the addition of clay in the films resulted in the formation of a heterogeneous microstructure, microcomposite or tactoid. Due to the formation of a microcomposite structure, functional properties of the films added with both clays such as opacity, solubility, and permeability to water vapor (PVA), were not better than those of the control film. Thus, it was concluded that although it is possible to produce a film added with modified clays using the casting method, it was not possible to obtain intercalation or exfoliation in a nanocomposite, which would result in improved functional properties.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
Given the broad acceptance of sour cassava starch biscuits in Brazil and the nutritional quality of quinoa flour, this study aimed to evaluate the effect of extrusion temperature, screw speed, moisture, and amount of quinoa flour on the physical properties of puffed snacks. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Effects of moisture and amount of quinoa flour on the expansion index and specific volume of snacks were observed. There was a pronounced increase in water solubility index of blends with the extrusion process with significant effects of all process parameters on the WSI. Higher water absorption index (WAI) was observed under high temperature, low moisture, and lower quinoa flour amount. Temperature and amount of quinoa flour influenced the color of the snacks. A positive quadratic effect of quinoa flour on hardness of products was observed. Blends of sour cassava starch and quinoa flour have good potential for use as raw material in production of extruded snacks with good physical properties.
Resumo:
In the present study, the efficacy of ozone inactivation of B. subtilis spores and E. coli in cassava starch was evaluated. Cassava starch with 18 and 30% moisture content was processed with ozone at concentrations of 40-118 ppm and exposure times of 15-120 minutes. The processing at 113 ppm/120 minutes (maximum exposure level to ozone evaluated) at 18% of moisture content did not cause significant reduction of B. subtilis spores and caused the reduction of only 2 decimal of E. coli. On the other hand, when the ozonation process was carried out for 120 minutes at 30% of moisture content, 3.6 decimal reduction of B. subtilis was achieved at 40 ppm of ozone and total B. subtilis load reduction (>5 log cycles) was observed at 118 ppm of ozone. Similarly, total E. coli load reduction (>7 log cycles) was achieved at 40 ppm of ozone exposure for 60 minutes. Therefore, the results indicate that the ozone efficacy against microorganisms in cassava starch was mainly dependent on the sample moisture content and to ozone concentration and exposure time. Moreover, it was observed that ozone is a promising technology to reduce microbial counts in dried food.