991 resultados para methane aromatization
Resumo:
Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. The analysis indicated that high dibromomethane selectivity is attainable (over 90%) accompanied by high methane conversions. The metathesis of dibromomethane can provide an alternative route to the conversion of methane (natural gas) economically with smaller installations than the current syn-gas route. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ni/K-MgO-ZrO catalysts for dry reforming of methane, with a range of Mg/Zr ratios and each containing about 10 wt% Ni, were prepared via Ni nitrate impregnation on MgO-ZrO supports synthesized by co-precipitation using KCO. It was found that a proportion of the potassium of the precipitant remained in the samples and improved the stability of the catalysts in the reaction. It was also shown that reduction of the catalysts at 1,023 K without calcination in air is necessary for stable and high activity; calcination in air at 1,073 K gives a deterioration of the catalytic properties, leading to rapid deactivation during the reaction. The order of the CH conversions of the reduced catalysts after 14 h on stream was as follows: Ni/K-MgZr ~ Ni/K-Mg ≥ Ni/K-MgZr Ni/K-Zr. A catalyst with 0.95 wt% K on MgO-ZrO with a Mg:Zr mole ratio of 5:2 showed the best resistance to deactivation. Experiments in a microbalance system showed that there was only negligible coke deposition on the surface of this sample. This behaviour was attributed to the presence of Ni nanoparticles with a diameter of less than 10 nm located on a MgO/NiO solid solution shell doped by K ions; this in turn covers a core of tetragonal ZrO and/or a MgO/ZrO solid solution. This conclusion was supported by EDS/TEM, XPS, XRD and H chemisorption measurements. © 2013 Springer Science+Business Media New York.
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.
Resumo:
A low temperature, isothermal, gas-phase, recyclable process is described for the partial oxidation of methane to methanol over Cu–ZSM-5. Activation in NO at 150 °C followed by methane reaction and steam extraction (both at 150 °C) allowed direct observation of methanol at the reactor outlet.
Resumo:
Soil gas emissions of methane and carbon dioxide on brownfield sites are usually attributed to anthropogenic activities; however geogenic sources of soil gas are often not considered during site investigation and risk management strategies. This paper presents a field study at a redeveloped brownfield site on a flood plain to identify accumulations of methane biogas trapped in underlying sediments. The investigation is based on a multidisciplinary approach using direct multi-level sampling measurements and Earth resistivity tomography . Resistivity imaging was applied to evaluate the feasibility of identifying the size and spatial continuity of soil gas accumulations in anthropogenic and naturally occurring deposits. As a result, biogas accumulations are described within both anthropogenic deposits and pristine organic sediments. This result is important to identify the correct approaches to identify and manage risks associated with soil gas emissions on brownfield and pristine sites. The organic-rich sediments in Quaternary fluvial environments of São Paulo Basin in particular the Tietê River, biogas reservoirs can be generated and trapped beneath geogenic and anthropogenic layers, potentially requiring the management of brownfield developments across this region.
Resumo:
The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,
<img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif">PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP−; bis(trifluoromethylsulfonyl)imide, TFSI−) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.
Resumo:
Selectivity is a fundamental issue in heterogeneous catalysis. In this study, the CH(4) selectivity in Fischer-Tropsch synthesis is chosen to be investigated: CH4 selectivity on Rh, Co, Ru, Fe, and Re surfaces is computed by first-principles methods. In conjunction with kinetic analyses, we are able to derive the effective barrier difference between methane formation and chain growth (Delta E(eff)) to quantify the CH(4) selectivity. By using this energy descriptor, the ranking of methane selectivity predicted from density functional theory (DFT) calculations is consistent with experimental work. Moreover, a linear correlation between Delta E(eff) and the chemisorption energy of C + 4H (Delta H) is found. This fundamental finding possesses the following significance: (i) it shows that the selectivity, which appears to have kinetic characteristics, is largely determined by thermodynamic properties; and (ii) it suggests that an increase of the binding strength of C + 4H will suppress methane selectivity.
Resumo:
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo2O4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo2O4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo2O4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH3O with a following dehydrogenation to -CH2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica