990 resultados para medical uncertainty
Resumo:
Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.
Resumo:
In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.
Resumo:
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.
Resumo:
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.
Resumo:
A substantial number of medical students in India have to bear an enormous financial burden for earning a bachelor's degree in medicine referred to as MBBS (bachelor of medicine and bachelor of surgery). This degree program lasts for four and one-half years followed by one year of internship. A postgraduate degree, such as MD, has to be pursued separately on completion of a MBBS. Every medical college in India is part of a hospital where the medical students get clinical exposure during the course of their study. All or at least a number of medical colleges in a given state are affiliated to a university that mainly plays a role of an overseeing authority. The medical colleges usually have no official interaction with other disciplines of education such as science and engineering, perhaps because of their independent location and absence of emphasis on medical research. However, many of the medical colleges are adept in imparting high-quality and sound training in medical practices including diagnostics and treatment. The medical colleges in India are generally of two types, i.e., government owned and private. Since only a limited number of seats are available across India in the former category of colleges, only a small fraction of aspiring candidates can find admission in these colleges after performing competitively in the relevant entrance tests. A major advantage of studying in these colleges is the nominal tuition fees that have to be paid. On the other hand, a large majority of would-be medical graduates have to seek admission in the privately run medical institutes in which the tuition and other related fees can be mind boggling when compared to their public counterparts. Except for candidates of exceptionally affluent background, the only alternative for fulfilling the dream of becoming a doctor is by financing one's study through hefty bank loans that may take years to pay back. It is often heard from patients that they are asked by doctors to undergo a plethora of diagnostic tests for apparently minor illnesses, which may financially benefit those prescribing the tests. The present paper attempts to throw light on the extent of disparity in cost of a medical education between state-funded and privately managed medical colleges in India; the average salary of a new medical graduate, which is often ridiculously low when compared to what is offered in entry-level engineering and business jobs; and the possible repercussions of this apparently unjust economic situation regarding the exploitation of patients.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
Fiber Bragg Grating (FBG) sensors have become one of the most widely used sensors in the recent times for a variety of applications in the fields of aerospace, civil, automotive, etc. It has been recently realized that FBGs and etched FBGs can play an important role in biomedical applications. This article provides a brief overview of the recent advancements in the application of FBG sensors in bio-mechanical, bio-sensing and bio-medical fields.
Resumo:
Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Unmet clinical needs remain the primary driving force for innovations in medical devices. While appropriate mechanisms to protect these innovative outcomes are essential, the performance of clinical trials to ensure safety is also mandated before the invention is ready for public use. Literature explaining the relationship between patenting activities and clinical trials of medical devices is scarce. Linking patent ownership to clinical trials may imply product leadership and value chain control. In this paper, we use patent data from Indian Patent Office (IPO), PCT, and data from Clinical Trials Registry of India (CTRI) to identify whether patent assignees have any role in leading as primary sponsors of clinical trials. A total of 42 primary sponsors are identified from the CTRI database in India. Number of patents awarded to these primary sponsors in the particular medical device, total number of patents awarded to the primary sponsor in all technologies, total number of patents in the specific medical device technology provides an indication of leadership and control in the value chain.
Resumo:
In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.