960 resultados para macrophage migration inhibition factor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Treatment of C2C12 myotubes with a tumour-derived proteolysis-inducing factor (PIF) at concentrations between 1 and 10 nM was shown to stimulate the activity of the apoptotic initiator caspases-8 and -9 and the apoptotic effector caspases-2,-3 and -6. This increased caspase activity was attenuated in myotubes pretreated with 50 μM eicosapentaenoic acid (EPA). At least part of the increase in caspase activity may be related to the increased proteasome proteolytic activity, since a caspase-3 inhibitor completely attenuated the PIF-induced increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome. However, Western blot analysis showed that PIF induced an increase in expression of the active form of caspase-3, which was also attenuated by EPA. Further Western blot analysis showed PIF increased the cytosolic content of cytochrome c, as well as expression of the pro-apoptotic protein bax but not the antiapoptotic protein bcl-2, which were both attenuated by 50 μM EPA. Induction of apoptosis by PIF in murine myotubes was confirmed by an increase in free nucleasomes formation and increased DNA fragmentation evidenced by a nucleasomal ladder typical of apoptotic cells. This process was again inhibited by pre-incubation with EPA. These results suggest that in addition to activating the proteasome, PIF induces apoptosis in C2C12 myotubes, possibly through the common intermediate arachidonic acid. Both of these processes would contribute to the loss of skeletal muscle in cancer cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heme-oxygenases (HOs) catalyze the conversion of heme into carbon monoxide and biliverdin. HO-1 is induced during hypoxia, ischemia/reperfusion, and inflammation, providing cytoprotection and inhibiting leukocyte migration to inflammatory sites. Although in vitro studies have suggested an additional role for HO-1 in angiogenesis, the relevance of this in vivo remains unknown. We investigated the involvement of HO-1 in angiogenesis in vitro and in vivo. Vascular endothelial growth factor (VEGF) induced prolonged HO-1 expression and activity in human endothelial cells and HO-1 inhibition abrogated VEGF-driven angiogenesis. Two murine models of angiogenesis were used: (1) angiogenesis initiated by addition of VEGF to Matrigel and (2) a lipopolysaccharide (LPS)-induced model of inflammatory angiogenesis in which angiogenesis is secondary to leukocyte invasion. Pharmacologic inhibition of HO-1 induced marked leukocytic infiltration that enhanced VEGF-induced angiogenesis. However, in the presence of an anti-CD18 monoclonal antibody (mAb) to block leukocyte migration, VEGF-induced angiogenesis was significantly inhibited by HO-1 antagonists. Furthermore, in the LPS-induced model of inflammatory angiogenesis, induction of HO-1 with cobalt protoporphyrin significantly inhibited leukocyte invasion into LPS-conditioned Matrigel and thus prevented the subsequent angiogenesis. We therefore propose that during chronic inflammation HO-1 has 2 roles: first, an anti-inflammatory action inhibiting leukocyte infiltration; and second, promotion of VEGF-driven noninflammatory angiogenesis that facilitates tissue repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background & Aims - Hepatitis C virus (HCV) infection leads to progressive liver disease, frequently culminating in fibrosis and hepatocellular carcinoma. The mechanisms underlying liver injury in chronic hepatitis C are poorly understood. This study evaluated the role of vascular endothelial growth factor (VEGF) in hepatocyte polarity and HCV infection. Methods - We used polarized hepatoma cell lines and the recently described infectious HCV Japanese fulminant hepatitis (JFH)-1 cell culture system to study the role of VEGF in regulating hepatoma permeability and HCV infection. Results - VEGF negatively regulates hepatocellular tight junction integrity and cell polarity by a novel VEGF receptor 2–dependent pathway. VEGF reduced hepatoma tight junction integrity, induced a re-organization of occludin, and promoted HCV entry. Conversely, inhibition of hepatoma expressed VEGF with the receptor kinase inhibitor sorafenib or with neutralizing anti-VEGF antibodies promoted polarization and inhibited HCV entry, showing an autocrine pathway. HCV infection of primary hepatocytes or hepatoma cell lines promoted VEGF expression and reduced their polarity. Importantly, treatment of HCV-infected cells with VEGF inhibitors restored their ability to polarize, showing a VEGF-dependent pathway. Conclusions - Hepatic polarity is critical to normal liver physiology. HCV infection promotes VEGF expression that depolarizes hepatoma cells, promoting viral transmission and lymphocyte migration into the parenchyma that may promote hepatocyte injury.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hematopoiesis is the tightly controlled and complex process in which the entire blood system is formed and maintained by a rare pool of hematopoietic stem cells (HSCs), and its dysregulation results in the formation of leukaemia. TRIB2, a member of the Tribbles family of serine/threonine pseudokinases, has been implicated in a variety of cancers and is a potent murine oncogene that induces acute myeloid leukaemia (AML) in vivo via modulation of the essential myeloid transcription factor CCAAT-enhancer binding protein α (C/EBPα). C/EBPα, which is crucial for myeloid cell differentiation, is commonly dysregulated in a variety of cancers, including AML. Two isoforms of C/EBPα exist - the full-length p42 isoform, and the truncated oncogenic p30 isoform. TRIB2 has been shown to selectively degrade the p42 isoform of C/EBPα and induce p30 expression in AML. In this study, overexpression of the p30 isoform in a bone marrow transplant (BMT) leads to perturbation of myelopoiesis, and in the presence of physiological levels of p42, this oncogene exhibited weak transformative ability. It was also shown by BMT that despite their degradative relationship, expression of C/EBPα was essential for TRIB2 mediated leukaemia. A conditional mouse model was used to demonstrate that oncogenic p30 cooperates with TRIB2 to reduce disease latency, only in the presence of p42. At the molecular level, a ubiquitination assay was used to show that TRIB2 degrades p42 by K48-mediated proteasomal ubiquitination and was unable to ubiquitinate p30. Mutation of a critical lysine residue in the C-terminus of C/EBPα abrogated TRIB2 mediated C/EBPα ubiquitination suggesting that this site, which is frequently mutated in AML, is the site at which TRIB2 mediates its degradative effects. The TRIB2-C/EBPα axis was effectively targeted by proteasome inhibition. AML is a very difficult disease to target therapeutically due to the extensive array of chromosomal translocations and genetic aberrations that contribute to the disease. The cell from which a specific leukaemia arises, or leukaemia initiating cell (LIC), can affect the phenotype and chemotherapeutic response of the resultant disease. The LIC has been elucidated for some common oncogenes but it is unknown for TRIB2. The data presented in this thesis investigate the ability of the oncogene TRIB2 to transform hematopoietic stem and progenitor cells in vitro and in vivo. TRIB2 overexpression conferred in vitro serially replating ability to all stem and progenitor cells studied. Upon transplantation, only TRIB2 overexpressing HSCs and granulocyte/macrophage progenitors (GMPs) resulted in the generation of leukaemia in vivo. TRIB2 induced a mature myeloid leukaemia from the GMP, and a mixed lineage leukaemia from the HSC. As such the role of TRIB2 in steady state hematopoiesis was also explored using a Trib2-/- mouse and it was determined that loss of Trib2 had no effect on lineage distribution in the hematopoietic compartment under steady-state conditions. The process of hematopoiesis is controlled by a host of lineage restricted transcription factors. Recently members of the Nuclear Factor 1 family of transcription factors (NFIA, NFIB, NFIC and NFIX) have been implicated in hematopoiesis. Little is known about the role of NFIX in lineage determination. Here we describe a novel role for NFIX in lineage fate determination. In human and murine datasets the expression of Nfix was shown to decrease as cells differentiated along the lymphoid pathway. NFIX overexpression resulted in enhanced myelopoiesis in vivo and in vitro and a block in B cell development at the pre-pro-B cell stage. Loss of NFIX resulted in disruption of myeloid and lymphoid differentiation in vivo. These effects on stem and progenitor cell fate correlated with changes in the expression levels of key transcription factors involved in hematopoietic differentiation including a 15-fold increase in Cebpa expression in Nfix overexpressing cells. The data presented support a role for NFIX as an important transcription factor influencing hematopoietic lineage specification. The identification of NFIX as a novel transcription factor influencing lineage determination will lead to further study of its role in hematopoiesis, and contribute to a better understanding of the process of differentiation. Elucidating the relationship between TRIB2 and C/EBPα not only impacts on our understanding of the pathophysiology of AML but is also relevant in other cancer types including lung and liver cancer. Thus in summary, the data presented in this thesis provide important insights into key areas which will facilitate the development of future therapeutic approaches in cancer treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. From the Clinical Editor: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were evaluated by Transwell and Transwell with matrigel assays, respectively. Furthermore, cell cycle and apoptosis were assessed by flow cytometry, while the mechanisms of action were determined by Western blotting. Results: PMF exhibited significant anti-proliferative effect on A549 cells in concentration-dependent and time-dependent manners, with half maximal inhibitory concentration (IC50) of 54.51 μM. Treatment with PMF (10, 20 and 40 μM) for 48 h resulted in significantly decreased migration and invasion in A549 cells. In addition, PMF at concentrations of 25, 50 and 75 μM induced cell cycle arrest in G0/G1phase and enhanced cell apoptosis in A549 cells. Furthermore, caspase-3, caspase-9 and Bax protein expressions were up-regulated while Bacl-2 and COX-2 protein expressions were significantly downregulated at 10, 20 and 40 μM concentrations of PMF. Conclusion: PMF suppresses A549 cell growth, migration and invasion. The mechanism may be related to the induction of mitochondria-mediated apoptosis pathway via regulation of caspase-3, caspase-9, Bcl-2 and Bax expressions, and inhibition of PGE2 synthesis by reducing COX-2 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As hypoxia-induced inflammatory angiogenesis may contribute to sickle cell disease manifestations, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from steady-state sickle cell anemia patients presented elevated concentrations of pro-angiogenic factors (Angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly augmenting endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice, compared with non-sickle cell disease mice, consistent with an upregulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy displayed a pro-angiogenic profile and had more significant effects on endothelial cell proliferation and capillary formation than plasma of patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factor profile, in association with an inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, sickle cell anemia and retinopathic hemoglobin SC individuals present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy for preventing progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the benefits and drawbacks of the potent anti-angiogenic effects of hydroxyurea should be clarified.