895 resultados para machine shop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho visa definir um modelo de alocação dos recursos da produção para centros de trabalho em sistemas baseados em job shop, usando a abordagem heurística para garantir uma boa alocação dos recursos. São levados em conta a complexidade de um ambiente de produção, seus aspectos temporais e os modelos de Job Shop Scheduling atualmente em uso. Com isso são examinados os aspectos conceituais deste ambiente e proposto um modelo de alocação de recursos para auxiliar no planejamento operacional do mesmo. Pode-se definir os recursos como todos os elementos necessários à execução das diversas atividades de um processo produtivo, tais como equipamentos, máquinas, mão-de-obra, etc. Por sua vez, os recursos são limitados por natureza, quanto à quantidade de unidades disponíveis, às suas funcionalidades e à capacidade produtiva. O processo de alocação dos recursos pressupõe a designação dos recursos mais satisfatórios para a execução de cada uma das atividades que fazem parte de um projeto. O modelo proposto é baseado no uso de heurísticas para resolver o escalonamento nos centros de trabalho, também chamados de células de produção, usando restrições e regras entre as ordens de fabricação (peças) e as máquinas, para encontrar uma solução satisfatória ao problema. O resultado final é uma ferramenta de apoio à decisão no processo de manufatura, permitindo a visualização do melhor escalonamento de produção, visando a redução do ciclo e setup de produção no processo, com base nas informações locais do ambiente fabril. O sistema está implementado numa empresa de componentes hidráulicos, inicialmente no centro de trabalho de corte, composto por quatro máquinas que realizam o corte de diversos tipos de matérias-primas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O trabalho teve por objetivo avaliar a demanda energética de uma semeadora-adubadora, em função do tipo e manejo da cultura de cobertura vegetal e da profundidade da haste de deposição de adubo. Foi utilizado um trator Valtra BM100, instrumentado, para tracionar uma semeadora-adubadora de precisão equipada com quatro fileiras de semeadura espaçadas de 0,9 m para cultura de milho. O experimento foi conduzido em parcelas subsubdivididas, na área experimental do Laboratório de Máquinas e Mecanização Agrícola (LAMMA) da UNESP-Jaboticabal, utilizando duas culturas de cobertura (mucuna-preta e crotalária), três manejos dessas coberturas, sendo dois mecânicos (triturador de palhas e rolo-faca) e um químico (pulverização com herbicida), realizados 120 dias após a semeadura das culturas de cobertura e três profundidades da haste de deposição do adubo (0,11; 0,14 e 0,17 m), perfazendo 18 tratamentos, com quatro repetições, totalizando 72 observações. Foram avaliados os parâmetros velocidade de deslocamento, patinagem, força na barra de tração, força de pico, potência na barra de tração, potência de pico e consumo de combustível. Pôde-se concluir que a força na barra de tração foi menor para as profundidades de 0,11 e 0,14 m da haste sulcadora de adubo, o mesmo ocorrendo para força de pico, potência na barra de tração e consumo volumétrico. O consumo específico foi menor na profundidade de 0,17 m da haste sulcadora de adubo. As culturas de cobertura e seus manejos não interferiram no desempenho das máquinas estudadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimizing the makespan of a flow-shop no-wait (FSNW) schedule where the processing times are randomly distributed is an important NP-Complete Combinatorial Optimization Problem. In spite of this, it can be found only in very few papers in the literature. By considering the Start Interval Concept, this problem can be formulated, in a practical way, in function of the probability of the success in preserve FSNW constraints for all tasks execution. With this formulation, for the particular case with 3 machines, this paper presents different heuristics solutions: by integrating local optimization steps with insertion procedures and by using genetic algorithms for search the solution space. Computational results and performance evaluations are commented. Copyright (C) 1998 IFAC.