881 resultados para lumped amplifier
Resumo:
The application of a-SiC:H/a-Si:H pinpin photodiodes for optoelectronic applications as a WDM demultiplexer device has been demonstrated useful in optical communications that use the WDM technique to encode multiple signals in the visible light range. This is required in short range optical communication applications, where for costs reasons the link is provided by Plastic Optical Fibers. Characterization of these devices has shown the presence of large photocapacitive effects. By superimposing background illumination to the pulsed channel the device behaves as a filter, producing signal attenuation, or as an amplifier, producing signal gain, depending on the channel/background wavelength combination. We present here results, obtained by numerical simulations, about the internal electric configuration of a-SiC:H/a-Si:H pinpin photodiode. These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photo-capacitance due to the accumulation of space charge localized at the bottom diode that, according to the Shockley-Read-Hall model, it is mainly due to defect trapping. Experimental result about measurement of the photodiode capacitance under different conditions of illumination and applied bias will be also presented. The combination of these analyses permits the description of a wavelength controlled photo-capacitance that combined with the series and parallel resistance of the diodes may result in the explicit definition of cut off frequencies for frequency capacitive filters activated by the light background or an oscillatory resonance of photogenerated carriers between the two diodes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
O estudo das curvas características de um transístor permite conhecer um conjunto de parâmetros essenciais à sua utilização tanto no domínio da amplificação de sinais como em circuitos de comutação. Deste estudo é possível obter dados em condições que muitas vezes não constam na documentação fornecida pelos fabricantes. O trabalho que aqui se apresenta consiste no desenvolvimento de um sistema que permite de forma simples, eficiente e económica obter as curvas características de um transístor (bipolar de junção, efeito de campo de junção e efeito de campo de metal-óxido semicondutor), podendo ainda ser utilizado como instrumento pedagógico na introdução ao estudo dos dispositivos semicondutores ou no projecto de amplificadores transistorizados. O sistema é constituído por uma unidade de condicionamento de sinal, uma unidade de processamento de dados (hardware) e por um programa informático que permite o processamento gráfico dos dados obtidos, isto é, traçar as curvas características do transístor. O seu princípio de funcionamento consiste na utilização de um conversor Digital-Analógico (DAC) como fonte de tensão variável, alimentando a base (TBJ) ou a porta (JFET e MOSFET) do dispositivo a testar. Um segundo conversor fornece a variação da tensão VCE ou VDS necessária à obtenção de cada uma das curvas. O controlo do processo é garantido por uma unidade de processamento local, baseada num microcontrolador da família 8051, responsável pela leitura dos valores em corrente e em tensão recorrendo a conversores Analógico-Digital (ADC). Depois de processados, os dados são transmitidos através de uma ligação USB para um computador no qual um programa procede à representação gráfica, das curvas características de saída e à determinação de outros parâmetros característicos do dispositivo semicondutor em teste. A utilização de componentes convencionais e a simplicidade construtiva do projecto tornam este sistema económico, de fácil utilização e flexível, pois permite com pequenas alterações
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA
Resumo:
Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional “parasitic” elements. The novel γ-junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores, pela Universidade Nova de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Digital Microfluidics (DMF) is a second generation technique, derived from the conventional microfluidics that instead of using continuous liquid fluxes, it uses only individual droplets driven by external electric signals. In this thesis a new DMF control/sensing system for visualization, droplet control (movement, dispensing, merging and splitting) and real time impedance measurement have been developed. The software for the proposed system was implemented in MATLAB with a graphical user interface. An Arduino was used as control board and dedicated circuits for voltage switching and contacts were designed and implemented in printed circuit boards. A high resolution camera was integrated for visualization. In our new approach, the DMF chips are driven by a dual-tone signal where the sum of two independent ac signals (one for droplet operations and the other for impedance sensing) is applied to the electrodes, and afterwards independently evaluated by a lock-in amplifier. With this new approach we were able to choose the appropriated amplitudes and frequencies for the different proposes (actuation and sensing). The measurements made were used to evaluate the real time droplet impedance enabling the knowledge of its position and velocity. This new approach opens new possibilities for impedance sensing and feedback control in DMF devices.
Resumo:
Modern fully integrated receiver architectures, require inductorless circuits to achieve their potential low area, low cost, and low power. The low noise amplifier (LNA), which is a key block in such receivers, is investigated in this thesis. LNAs can be either narrowband or wideband. Narrowband LNAs use inductors and have very low noise figure, but they occupy a large area and require a technology with RF options to obtain inductors with high Q. Recently, wideband LNAs with noise and distortion cancelling, with passive loads have been proposed, which can have low NF, but have high power consumption. In this thesis the main goal is to obtain a very low area, low power, and low-cost wideband LNA. First, it is investigated a balun LNA with noise and distortion cancelling with active loads to boost the gain and reduce the noise figure (NF). The circuit is based on a conventional balun LNA with noise and distortion cancellation, using the combination of a common-gate (CG) stage and common-source (CS) stage. Simulation and measurements results, with a 130 nm CMOS technology, show that the gain is enhanced by about 3 dB and the NF is reduced by at least 0.5 dB, with a negligible impact on the circuit linearity (IIP3 is about 0 dBm). The total power dissipation is only 4.8 mW, and the active area is less than 50 x 50 m2 . It is also investigated a balun LNA in which the gain is boosted by using a double feedback structure.We propose to replace the load resistors by active loads, which can be used to implement local feedback loops (in the CG and CS stages). This will boost the gain and reduce the noise figure (NF). Simulation results, with the same 130 nm CMOS technology as above, show that the gain is 24 dB and NF is less than 2.7 dB. The total power dissipation is only 5.4 mW (since no extra blocks are required), leading to a figure-of-merit (FoM) of 3.8 mW
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.