906 resultados para lower crust
Resumo:
This paper gives a brief review of R&D researches for light olefin synthesis directly and indirectly from synthesis gas in the Dalian Institute of Chemical Physics (DICP). The first pilot plant test was on methanol to olefin (MTO) reaction and was finished in 1993, which was based on ZSM-5-type catalyst and fixed bed reaction. In the meantime, a new indirect method designated as SDTO (syngas via dimethylether to olefin) was proposed. In this process, metal-acid bifunctional catalyst was applied for synthesis gas to dimethylether(DME) reaction, and modified SAPO-34 catalyst that was synthesized by a new low-cost method with optimal crystal size was used to convert DME to light olefin on a fluidized bed reactor. The pilot plant test on SDTO was performed and finished in 1995. Evaluation of the pilot plant data showed that 190-200 g of DME were yielded by single-pass for each standard cubic meter of synthesis gas. For the second reaction, 1.880 tons of DME or 2.615 tons of methanol produced 1 ton of light olefins, which constitutes of 0.533 ton of ethylene, 0.349 ton of propylene and 0.118 ton of butene. DICP also paid some attention on direct conversion of synthesis gas to light olefins. A semi-pilot plant test (catalyst 1.8 1) was finished in 1995 with a CO conversion > 70% and a C(2)(=)-C(4)(=) olefin selectivity 71-74% in 1000 h. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiations of variables in sigmoid and noisy-OR networks. The bounds determine confidence intervals for the desired likelihoods and become useful when the size of the network (or clique size) precludes exact computations. We illustrate the tightness of the obtained bounds by numerical experiments.
Resumo:
The lower alkene production by the gas-phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of hexane (C6) with added syngas was investigated. The addition of syngas to the COC process could effectively enhance the selectivity to lower alkenes and decrease the selectivity to COx, because of the preferential reaction between O-2 with H-2 contained in the syngas, whereas it has little effect on the conversion of C6 and product distribution in the GOC process. The high selectivity to lower alkenes of 70% and low selectivity to CO, of 6% at C6 conversion of 66% were achieved over 0.1% Pt/MgAl2O4 catalyst. The COC process of C6 combined with the syngas in the feed could directly produce a gas mixture of lower alkenes, H-2, and CO, which usually is a suitable feedstock for the hydroformylation process.
Resumo:
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.
Resumo:
We prove several new lower bounds for constant depth quantum circuits. The main result is that parity (and hence fanout) requires log depth circuits, when the circuits are composed of single qubit and arbitrary size Toffoli gates, and when they use only constantly many ancillae. Under this constraint, this bound is close to optimal. In the case of a non-constant number of ancillae, we give a tradeoff between the number of ancillae and the required depth.
Resumo:
We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillae, only a few input states can set all the control qubits of a Toffoli gate to 1. This can be used to selectively remove large Toffoli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof that parity cannot be computed by constant depth quantum circuits without ancillæ.
Resumo:
A souterrain was discovered here when the weight of a tractor passing overhead caused a collapse of the roof of Chamber I. It was surveyed in March 1976. The landowner, Mr. Thomas Curran of Ballylangdon has consented to keep the site open for future inspection. The site is not directly connected with any visible surface structure. A small uni-vallate ringfort is however situated c.I60m S.S.E. of the site. The bedrock is a slaty sandstone.
Resumo:
Introduction: The prevalence of diabetes is rising rapidly. Assessing quality of diabetes care is difficult. Lower Extremity Amputation (LEA) is recognised as a marker of the quality of diabetes care. The focus of this thesis was first to describe the trends in LEA rates in people with and without diabetes in the Republic of Ireland (RoI) in recent years and then, to explore the determinants of LEA in people with diabetes. While clinical and socio-demographic determinants have been well-established, the role of service-related factors has been less well-explored. Methods: Using hospital discharge data, trends in LEA rates in people with and without diabetes were described and compared to other countries. Background work included concordance studies exploring the reliability of hospital discharge data for recording LEA and diabetes and estimation of diabetes prevalence rates in the RoI from a nationally representative study (SLAN 2007). To explore determinants, a systematic review and meta-analysis assessed the effect of contact with a podiatrist on the outcome of LEA in people with diabetes. Finally, a case-control study using hospital discharge data explored determinants of LEA in people with diabetes with a particular focus on the timing of access to secondary healthcare services as a risk factor. Results: There are high levels of agreement between hospital discharge data and medical records for LEA and diabetes. Thus, hospital discharge data was deemed sufficiently reliable for use in this PhD thesis. A decrease in major diabetes-related LEA rates in people with diabetes was observed in the RoI from 2005-2012. In 2012, the relative risk of a person with diabetes undergoing a major LEA was 6.2 times (95% CI 4.8-8.1) that of a person without diabetes. Based on the systematic review and meta-analysis, contact with a podiatrist did not significantly affect the relative risk (RR) of LEA in people with diabetes. Results from the case-control study identified being single, documented CKD and documented hypertension as significant risk factors for LEA in people with diabetes whilst documented retinopathy was protective. Within the seven year time window included in the study, no association was detected between LEA in patients with diabetes and timing of patient access to secondary healthcare for diabetes management. Discussion: Many countries have reported reduced major LEA rates in people with diabetes coinciding with improved organisation of healthcare systems. Reassuringly, these first national estimates in people with diabetes in the RoI from 2005 to 2012 demonstrated reducing trends in major LEA rates. This may be attributable to changes in diabetes care and also, secular trends in smoking, dyslipidaemia and hypertension. Consistent with international practice, LEA trends data in Ireland can be used to monitor quality of care. Quantifying this improvement precisely, though, is problematic without robust denominator data on the prevalence of diabetes. However, a reduction in major diabetes-related LEA rates suggests improved quality of diabetes care. Much controversy exists around the reliability of hospital discharge data in the RoI. This thesis includes the first multi-site study to explore this issue and found hospital discharge data reliable for the reporting of the procedure of LEA and diagnosis of diabetes. This project did not detect protective effects of access to services including podiatry and secondary healthcare for LEA in people with diabetes. A major limitation of the systematic review and meta-analysis was the design and quality of the included studies. The data available in the area of effect of contact with a podiatrist on LEA risk are too sparse to say anything definitive about the efficacy of podiatry on LEA. Limitations of the case-control study include lack of a diabetes register in Ireland, restricted information from secondary healthcare and lack of data available from primary healthcare. Due to these issues, duration of disease could not be accounted for in the study which limits the conclusions that can be drawn from the results. The model of diabetes care in the RoI is currently undergoing a re-configuration with plans to introduce integrated care. In the future, trends in LEA rates should be continuously monitored to evaluate the effectiveness of changes to the healthcare system. Efforts are already underway to improve the availability of routine data from primary healthcare with the recent development of the iPCRN (Irish Primary Care Research Network). Linkage of primary and secondary healthcare records with a unique patient identifier should be the goal for the future.
Resumo:
Selenium (Se) is a micronutrient necessary for the function of a variety of important enzymes; Se also exhibits a narrow range in concentrations between essentiality and toxicity. Oviparous vertebrates such as birds and fish are especially sensitive to Se toxicity, which causes reproductive impairment and defects in embryo development. Selenium occurs naturally in the Earth's crust, but it can be mobilized by a variety of anthropogenic activities, including agricultural practices, coal burning, and mining.
Mountaintop removal/valley fill (MTR/VF) coal mining is a form of surface mining found throughout central Appalachia in the United States that involves blasting off the tops of mountains to access underlying coal seams. Spoil rock from the mountain is placed into adjacent valleys, forming valley fills, which bury stream headwaters and negatively impact surface water quality. This research focused on the biological impacts of Se leached from MTR/VF coal mining operations located around the Mud River, West Virginia.
In order to assess the status of Se in a lotic (flowing) system such as the Mud River, surface water, insects, and fish samples including creek chub (Semotilus atromaculatus) and green sunfish (Lepomis cyanellus) were collected from a mining impacted site as well as from a reference site not impacted by mining. Analysis of samples from the mined site showed increased conductivity and Se in the surface waters compared to the reference site in addition to increased concentrations of Se in insects and fish. Histological analysis of mined site fish gills showed a lack of normal parasites, suggesting parasite populations may be disrupted due to poor water quality. X-ray absorption near edge spectroscopy techniques were used to determine the speciation of Se in insect and creek chub samples. Insects contained approximately 40-50% inorganic Se (selenate and selenite) and 50-60% organic Se (Se-methionine and Se-cystine) while fish tissues contained lower proportions of inorganic Se than insects, instead having higher proportions of organic Se in the forms of methyl-Se-cysteine, Se-cystine, and Se-methionine.
Otoliths, calcified inner ear structures, were also collected from Mud River creek chubs and green sunfish and analyzed for Se content using laser ablation inductively couple mass spectrometry (LA-ICP-MS). Significant differences were found between the two species of fish, based on the concentrations of otolith Se. Green sunfish otoliths from all sites contained background or low concentrations of otolith Se (< 1 µg/g) that were not significantly different between mined and unmined sites. In contrast creek chub otoliths from the historically mined site contained much higher (≥ 5 µg/g, up to approximately 68 µg/g) concentrations of Se than for the same species in the unmined site or for the green sunfish. Otolith Se concentrations were related to muscle Se concentrations for creek chubs (R2 = 0.54, p = 0.0002 for the last 20% of the otolith Se versus muscle Se) while no relationship was observed for green sunfish.
Additional experiments using biofilms grown in the Mud River showed increased Se in mined site biofilms compared to the reference site. When we fed fathead minnows (Pimephales promelas) on these biofilms in the laboratory they accumulated higher concentrations of Se in liver and ovary tissues compared to fathead minnows fed on reference site biofilms. No differences in Se accumulation were found in muscle from either treatment group. Biofilms were also centrifuged and separated into filamentous green algae and the remaining diatom fraction. The majority of Se was found in the diatom fraction with only about 1/3rd of total biofilm Se concentration present in the filamentous green algae fraction
Finally, zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared to controls. Antioxidant rescue of L-selenomethionime induced deformities was attempted in embryos using N-acetylcysteine (NAC). Pretreatment with NAC significantly reduced deformities in the zebrafish embryos secondarily treated with L-selenomethionine, suggesting that oxidative stress may play a role in Se toxicity. Selenite exposure also induced a 6.6-fold increase in glutathione-S-transferase pi class 2 gene expression, which is involved in xenobiotic transformation. No changes in gene expression were observed for selenate or L-selenomethionine-exposed embryos.
The findings in this dissertation contribute to the understanding of how Se bioaccumulates in a lotic system and is transferred through a simulated foodweb in addition to further exploring oxidative stress as a potential mechanism for Se-induced embryo toxicity. Future studies should continue to pursue the role of oxidative stress and other mechanisms in Se toxicity and the biotransformation of Se in aquatic ecosystems.
Resumo:
Gemstone Team BALANCE
Resumo:
Lower Extremity Joint Arthroplasty (LEJA) surgery is an effective way to alleviate painful osteoarthritis. Unfortunately, these surgeries do not normalize the loading asymmetry during the single leg stance phase of gait. Therefore, we examined single leg balance in 234 TJA patients (75 hips, 65 knees, 94 ankles) approximately 12 months following surgery. Patients passed if they maintained single leg balance for 10s with their eyes open. Patients one year following total hip arthroplasty (THA-63%) and total knee arthroplasty (TKA-69%) had similar pass rates compared to a total ankle arthroplasty (TAA-9%). Patients following THA and TKA exhibit better unilateral balance in comparison with TAA patients. It may be beneficial to include a rigorous proprioception and balance training program in TAA patients to optimize functional outcomes.
Resumo:
The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).
The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.
In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.
The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
Resumo:
The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.