479 resultados para lochleitende Nanostab-Ensembles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of "typical set (pairs) decoding" for ensembles of Gallager's linear code is investigated using statistical physics. In this decoding method, errors occur, either when the information transmission is corrupted by atypical noise, or when multiple typical sequences satisfy the parity check equation as provided by the received corrupted codeword. We show that the average error rate for the second type of error over a given code ensemble can be accurately evaluated using the replica method, including the sensitivity to message length. Our approach generally improves the existing analysis known in the information theory community, which was recently reintroduced in IEEE Trans. Inf. Theory 45, 399 (1999), and is believed to be the most accurate to date. © 2002 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo, neurons of the globus pallidus (GP) and subthalamic nucleus (STN) resonate independently around 70 Hz. However, on the loss of dopamine as in Parkinson's disease, there is a switch to a lower frequency of firing with increased bursting and synchronization of activity. In vitro, type A neurons of the GP, identified by the presence of Ih and rebound depolarizations, fire at frequencies (≤80 Hz) in response to glutamate pressure ejection, designed to mimic STN input. The profile of this frequency response was unaltered by bath application of the GABAA antagonist bicuculline (10 μM), indicating the lack of involvement of a local GABA neuronal network, while cross-correlations of neuronal pairs revealed uncorrelated activity or phase-locked activity with a variable phase delay, consistent with each GP neuron acting as an independent oscillator. This autonomy of firing appears to arise due to the presence of intrinsic voltage- and sodium-dependent subthreshold membrane oscillations. GABAA inhibitory postsynaptic potentials are able to disrupt this tonic activity while promoting a rebound depolarization and action potential firing. This rebound is able to reset the phase of the intrinsic oscillation and provides a mechanism for promoting coherent firing activity in ensembles of GP neurons that may ultimately lead to abnormal and pathological disorders of movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a variation of the prototype combinatorial optimization problem known as graph colouring. Our optimization goal is to colour the vertices of a graph with a fixed number of colours, in a way to maximize the number of different colours present in the set of nearest neighbours of each given vertex. This problem, which we pictorially call palette-colouring, has been recently addressed as a basic example of a problem arising in the context of distributed data storage. Even though it has not been proved to be NP-complete, random search algorithms find the problem hard to solve. Heuristics based on a naive belief propagation algorithm are observed to work quite well in certain conditions. In this paper, we build upon the mentioned result, working out the correct belief propagation algorithm, which needs to take into account the many-body nature of the constraints present in this problem. This method improves the naive belief propagation approach at the cost of increased computational effort. We also investigate the emergence of a satisfiable-to-unsatisfiable 'phase transition' as a function of the vertex mean degree, for different ensembles of sparse random graphs in the large size ('thermodynamic') limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a two-dimensional water model investigation and development of a multiscale method for the modelling of large systems, such as virus in water or peptide immersed in the solvent. We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using Molecular Dynamics. We have studied its dynamical and structural properties dependence on the model’s parameters. For the first time we derived formulas to calculate thermodynamic properties of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of the model in both ensembles. We have developed and implemented a self-consistent multiscale method, which is able to communicate micro- and macro- scales. This multiscale method assumes, that matter consists of the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using Molecular Dynamics. We have demonstrated that the communication between the disparate scales is possible without introduction of fictitious interface or approximations which reduce the accuracy of the information exchange between the scales. We have investigated control parameters, which were introduced to control the contribution of each phases to the matter behaviour. We have shown, that microscales inherit dynamical properties of the macroscales and vice versa, depending on the concentration of each phase. We have shown, that Radial Distribution Function is not altered and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to Fluctuating Hydrodynamics description, when phase balance is changed. In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water models. For the SPC/E water model we investigate microscale fluctuations which are computed using advanced mapping technique of the small scales to the large scales, which was developed by Voulgarakisand et. al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most existing color-based tracking algorithms utilize the statistical color information of the object as the tracking clues, without maintaining the spatial structure within a single chromatic image. Recently, the researches on the multilinear algebra provide the possibility to hold the spatial structural relationship in a representation of the image ensembles. In this paper, a third-order color tensor is constructed to represent the object to be tracked. Considering the influence of the environment changing on the tracking, the biased discriminant analysis (BDA) is extended to the tensor biased discriminant analysis (TBDA) for distinguishing the object from the background. At the same time, an incremental scheme for the TBDA is developed for the tensor biased discriminant subspace online learning, which can be used to adapt to the appearance variant of both the object and background. The experimental results show that the proposed method can track objects precisely undergoing large pose, scale and lighting changes, as well as partial occlusion. © 2009 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feature selection is important in medical field for many reasons. However, selecting important variables is a difficult task with the presence of censoring that is a unique feature in survival data analysis. This paper proposed an approach to deal with the censoring problem in endovascular aortic repair survival data through Bayesian networks. It was merged and embedded with a hybrid feature selection process that combines cox's univariate analysis with machine learning approaches such as ensemble artificial neural networks to select the most relevant predictive variables. The proposed algorithm was compared with common survival variable selection approaches such as; least absolute shrinkage and selection operator LASSO, and Akaike information criterion AIC methods. The results showed that it was capable of dealing with high censoring in the datasets. Moreover, ensemble classifiers increased the area under the roc curves of the two datasets collected from two centers located in United Kingdom separately. Furthermore, ensembles constructed with center 1 enhanced the concordance index of center 2 prediction compared to the model built with a single network. Although the size of the final reduced model using the neural networks and its ensembles is greater than other methods, the model outperformed the others in both concordance index and sensitivity for center 2 prediction. This indicates the reduced model is more powerful for cross center prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb’s theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb’s view that neuronal assemblies correspond to primitive building blocks of representation, nearly unchanged in 10 the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How experience alters neuronal ensemble dynamics and how locus coeruleus-mediated norepinephrine release facilitates memory formation in the brain are the topics of this thesis. Here we employed a visualization technique, cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH), to assess activation patterns of neuronal ensembles in the olfactory bulb (OB) and anterior piriform cortex (aPC) to repeated odor inputs. Two associative learning models were used, early odor preference learning in rat pups and adult rat go-no-go odor discrimination learning. With catFISH of an immediate early gene, Arc, we showed that odor representation in the OB and aPC was sparse (~5-10%) and widely distributed. Odor associative learning enhanced the stability of the rewarded odor representation in the OB and aPC. The stable component, indexed by the overlap between the two ensembles activated by the rewarded odor at two time points, increased from ~25% to ~50% (p = 0.004-1.43E⁻4; Chapter 3 and 4). Adult odor discrimination learning promoted pattern separation between rewarded and unrewarded odor representations in the aPC. The overlap between rewarded and unrewarded odor representations reduced from ~25% to ~14% (p = 2.28E⁻⁵). However, learning an odor mixture as a rewarded odor increased the overlap of the component odor representations in the aPC from ~23% to ~44% (p = 0.010; Chapter 4). Blocking both α- and β-adrenoreceptors in the aPC prevented highly similar odor discrimination learning in adult rats, and reduced OB mitral and granule ensemble stability to the rewarded odor. Similar treatment in the OB only slowed odor discrimination learning. However, OB adrenoceptor blockade disrupted pattern separation and ensemble stability in the aPC when the rats demonstrated deficiency in discrimination (Chapter 5). In another project, the role of α₂-adrenoreceptors in the OB during early odor preference learning was studied. OB α2-adrenoceptor activation was necessary for odor learning in rat pups. α₂-adrenoceptor activation was additive with β-adrenoceptor mediated signalling to promote learning (Chapter 2). Together, these experiments suggest that odor representations are highly adaptive at the early stages of odor processing. The OB and aPC work in concert to support odor learning and top-down adrenergic input exerts a powerful modulation on both learning and odor representation.