942 resultados para light feedback
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH METHODS: For the most recent update, we searched the Cochrane Collaboration Tobacco Addiction Group Specialized Register in July 2012 for studies added since the last update in 2009. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. Results were expressed as a relative risk (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate, a pooled effect was estimated using a Mantel-Haenszel fixed-effect method. MAIN RESULTS: We included 15 trials using a variety of biomedical tests. Two pairs of trials had sufficiently similar recruitment, setting and interventions to calculate a pooled effect; there was no evidence that carbon monoxide (CO) measurement in primary care (RR 1.06, 95% CI 0.85 to 1.32) or spirometry in primary care (RR 1.18, 95% CI 0.77 to 1.81) increased cessation rates. We did not pool the other 11 trials due to the presence of substantial clinical heterogeneity. Of the remaining 11 trials, two trials detected statistically significant benefits: one trial in primary care detected a significant benefit of lung age feedback after spirometry (RR 2.12, 95% CI 1.24 to 3.62) and one trial that used ultrasonography of carotid and femoral arteries and photographs of plaques detected a benefit (RR 2.77, 95% CI 1.04 to 7.41) but enrolled a population of light smokers and was judged to be at unclear risk of bias in two domains. Nine further trials did not detect significant effects. One of these tested CO feedback alone and CO combined with genetic susceptibility as two different interventions; none of the three possible comparisons detected significant effects. One trial used CO measurement, one used ultrasonography of carotid arteries and two tested for genetic markers. The four remaining trials used a combination of CO and spirometry feedback in different settings. AUTHORS' CONCLUSIONS: There is little evidence about the effects of most types of biomedical tests for risk assessment on smoking cessation. Of the fifteen included studies, only two detected a significant effect of the intervention. Spirometry combined with an interpretation of the results in terms of 'lung age' had a significant effect in a single good quality trial but the evidence is not optimal. A trial of carotid plaque screening using ultrasound also detected a significant effect, but a second larger study of a similar feedback mechanism did not detect evidence of an effect. Only two pairs of studies were similar enough in terms of recruitment, setting, and intervention to allow meta-analyses; neither of these found evidence of an effect. Mixed quality evidence does not support the hypothesis that other types of biomedical risk assessment increase smoking cessation in comparison to standard treatment. There is insufficient evidence with which to evaluate the hypothesis that multiple types of assessment are more effective than single forms of assessment.
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
Purpose: The retinal balance between pro- and anti-angiogenic factors is critical for angiogenesis control, but is also involved in cell survival. We previously reported upregulation of VEGF and photoreceptor (PR) cell death in the Light-damage (LD) model. Preliminary results showed that anti-VEGF can rescue PR from cell death. Thus, we investigated the role of VEGF on the retina and we herein described the effect of anti-VEGF antibody delivered by lentiviral gene transfer in this model.Methods: To characterize the action of VEGF during the LD, we exposed Balb/c mice subretinally injected with LV-anti-VEGF, or not, to 5'000 lux for 1h. We next evaluated the retinal function, PR survival and protein expression (VEGF, VEGFR1/2, Src, PEDF, p38MAPK, Akt, Peripherin, SWL-opsin) after LD. We analyzed Blood retinal barrier (BRB) integrity on flat-mounted RPE and cryosections stained with β-catenin, ZO-1, N-cadherin and albumin.Results: Results indicate that the VEGF pathway is modulated after LD. LD leads to extravascular albumin leakage and BRB breakdown: β-catenin, ZO-1 and N-cadherin translocate to the cytoplasm of RPE cells showing loss of cell cohesion. This phenomenon is in adequacy with the VEGF time-course expression. Assessment of the retinal function reveals that PR rescue correlates with the level of LV-anti-VEGF expression. Rhodopsin content was higher in the LV-anti-VEGF group than in controls and measures of the ONL thickness indicate that LV-anti-VEGF preserves by 82% the outer nuclear layer from degeneration. Outer segments (OS) appeared well organized with an appropriate length in the LV-anti-VEGF group compared to controls, and the expression of SWL-opsin is maintained in the OS without being mislocalized as in the LV-GFP group. Finally, LV-anti-VEGF treatment prevents BRB breakdown and maintained RPE cell integrity.Conclusions: This study involves VEGF in LD and highlights the prime importance of the BRB integrity for PR survival. Taken together, these results show that anti-VEGF is neuroprotective in this model and maintains functional PR layer in LD-treated mice.
Resumo:
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
This article summarizes the basic principles of light microscopy, with examples of applications in biomedicine that illustrate the capabilities of thetechnique.
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. We reviewed systematically data on smoking cessation rates from controlled trials that used biomedical risk assessment and feedback. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched he Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1966 to 2004), and EMBASE (1980 to 2004). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. MAIN RESULTS: From 4049 retrieved references, we selected 170 for full text assessment. We retained eight trials for data extraction and analysis. One of the eight used CO alone and CO + Genetic Susceptibility as two different intervention groups, giving rise to three possible comparisons. Three of the trials isolated the effect of exhaled CO on smoking cessation rates resulting in the following odds ratios (ORs) and 95% confidence intervals (95% CI): 0.73 (0.38 to 1.39), 0.93 (0.62 to 1.41), and 1.18 (0.84 to 1.64). Combining CO measurement with genetic susceptibility gave an OR of 0.58 (0.29 to 1.19). Exhaled CO measurement and spirometry were used together in three trials, resulting in the following ORs (95% CI): 0.6 (0.25 to 1.46), 2.45 (0.73 to 8.25), and 3.50 (0.88 to 13.92). Spirometry results alone were used in one other trial with an OR of 1.21 (0.60 to 2.42).Two trials used other motivational feedback measures, with an OR of 0.80 (0.39 to 1.65) for genetic susceptibility to lung cancer alone, and 3.15 (1.06 to 9.31) for ultrasonography of carotid and femoral arteries performed in light smokers (average 10 to 12 cigarettes a day). AUTHORS' CONCLUSIONS: Due to the scarcity of evidence of sufficient quality, we can make no definitive statements about the effectiveness of biomedical risk assessment as an aid for smoking cessation. Current evidence of lower quality does not however support the hypothesis that biomedical risk assessment increases smoking cessation in comparison with standard treatment. Only two studies were similar enough in term of recruitment, setting, and intervention to allow pooling of data and meta-analysis.
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Resumo:
Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.
Resumo:
Cutaneous squamous cell carcinoma (SCC) represents the most important cutaneous complication following organ transplantation. It develops mostly on sun-exposed areas. A recent study showed the role of activating transcription factor 3 (ATF3) in SCC development following treatment with calcineurin inhibitors. It has been reported that ATF3, which may act as an oncogene, is under negative calcineurin/nuclear factor of activated T cells (NFAT) control and is upregulated by calcineurin inhibitors. Still, these findings do not fully explain the preferential appearance of SCC on chronically sun-damaged skin. We analyzed the influence of UV radiation on ATF3 expression and its potential role in SCC development. We found that ATF3 is a specifically induced AP1 member in SCC of transplanted patients. Its expression was strongly potentiated by combination of cyclosporine A and UVA treatment. UVA induced ATF3 expression through reactive oxygen species-mediated nuclear factor erythroid 2-related factor 2 (NRF2) activation independently of calcineurin/NFAT inhibition. Activated NRF2 directly binds to ATF3 promoter, thus inducing its expression. These results demonstrate two mechanisms that independently induce and, when combined together, potentiate the expression of ATF3, which may then force SCC development. Taking into account the previously defined role of ATF3 in the SCC development, these findings may provide an explanation and a mechanism for the frequently observed burden on SCCs on sun-exposed areas of the skin in organ transplant recipients treated by calcineurin inhibitors.
Resumo:
Red light running continues to be a serious safety concern for many communities in the United States. The Federal Highway Administration reported that in 2011, red light running accounted for 676 fatalities nationwide. Red light running crashes at a signalized intersections are more serious, especially in high speed corridors where speeds are above 35 mph. Many communities have invested in red light countermeasures including low-cost strategies (e.g. signal backplates, targeted enforcement, signal timing adjustments and improvement with signage) to high-cost strategies (e.g. automated enforcement and intersection geometric improvements). This research study investigated intersection confirmation lights as a low-cost strategy to reduce red light running violations. Two intersections in Altoona and Waterloo, Iowa were equipped with confirmation lights which targeted the through and left turning movements. Confirmation lights enable a single police officer to monitor a specific lane of traffic downstream of the intersection. A before-after analysis was conducted in which a change in red light running violations prior to- and 1 and 3 months after installation were evaluated. A test of proportions was used to determine if the change in red light running violation rates were statistically significant at the 90 and 95 percent levels of confidence. The two treatment intersections were then compared to the changes of red light running violation rates at spillover intersections (directly adjacent to the treatment intersections) and control intersections. The results of the analysis indicated a 10 percent reduction of red light running violations in Altoona and a 299 percent increase in Waterloo at the treatment locations. Finally, the research team investigated the time into red for each observed red light running violation. The analysis indicated that many of the violations occurred less than one second into the red phase and that most of the violation occurred during or shortly after the all-red phase.
Resumo:
Dynamic speed feedback sign (DSFS) systems are traffic control devices that are programmed to provide a message to drivers exceeding a certain speed thresh¬old. A DSFS system typically consists of a speed-measuring device, which may be loop detectors or radar, and a message sign that displays feedback to drivers who exceed a predetermined speed threshold. The feedback may be the driver’s actual speed, a message like “SLOW DOWN,” or activation of a warning device such as beacons or a curve warning sign. For more on this topic by these authors, see also "Evaluation of Dynamic Speed Feedback Signs on Curves: A National Demonstration Project": http://www.trb.org/main/blurbs/172092.aspx