979 resultados para leaf and root anatomy
Resumo:
The aim of this study was to evaluate the effect of sucrose concentration in the culture medium on growth and on the establishment of mycorrhizas during the acclimatization of pineapple cv. Pérola. The plantlets were micropropagated in MS culture medium with 0, 10, 20 and 30 g L-1 of sucrose and then they were acclimatized during 12 weeks under greenhouse conditions, in a sandy soil - compost mixture, uninoculated or inoculated with a Rhizophagus clarus isolate. Plantlets from the culture medium with 20 g and 30 g of sucrose L-1 showed higher shoot and root biomass than those from sugar-free medium. Mycorrhizal colonization was lower in plantlets micropropagated in sucrose-free medium, but the intensity of arbuscules did not differ among treatments. In the 12-week period of acclimatization, mycorrhizal colonization had no effect on plant biomass.
Resumo:
Fragile X-syndrome is caused by a mutation in chromosome X. It is one of the most frequent causes of learning disability. The most frequent manifestations of fragile X-syndrome are learning disability, different orofacial morphological alterations and an increase in testicle size. The disease is associated with cardiac malformations, joint hyperextension and behavioural alterations. We present two male patients aged 17 and 10 years, treated in our Service due to severe gingivitis. Both showed the typical facial and dental characteristics of the syndrome. In addition, we detected the presence of root anomalies such as taurodontism and root bifurcation, which had not been associated with fragile X-syndrome in the literature. In some cases these root malformations have been associated with other sex-linked congenital syndromes, though in none of the studies published in the literature have they been related with fragile X-syndrome. This syndrome is relevant due to its high prevalence, the presentation of certain oral and facial characteristics that can facilitate the diagnosis, and the few cases published to date
Resumo:
Aim of the study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits ( tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires.
Resumo:
The chemical composition of the volatiles of Nectandra salicina growing wild in Costa Rica was determined by capillary GC/FID and GC/MS. Thirty-seven and forty-two compounds were identified in the leaf and branch oils respectively corresponding to about 92.6 and 86.2% of the total amount of the oils. The major components of the leaf oil were: atractylone (14.6%), viridiflorene (10.1%), α-pinene (9.4%), β-caryophyllene (7.2%), α-humulene (7.0%), δ-cadinene (6.1%), β-pinene (6.0%) and germacrene D (5.8%). The major components of the branch oil were: atractylone (21.1%), germacrene D (10.7%), viridiflorene (7.9%) and 7-epi-α-selinene (5.0%). When the oils were tested on different cell lines, all the LD50 values were higher than 150 µg/mL, with values very similar for the leaf and branch oils. Low toxicity could be explained by antagonistic effects among the main compounds present in the oils.
Resumo:
The cubiu (Solanum sessiliflorum) fruit, originating in the Amazon basin, is commonly used in that region for food, medicine, and cosmetics. In an experimental culture of cubiu, in order to evaluate its adaptation to conditions in the Northern region of the state of Rio de Janeiro, it was observed plants with mosaic symptoms. A cubiu plant was collected and analyzed to identify the etiological agent. After mechanical passage through a local lesion host, a host range test was performed. The virus induced chlorotic local lesions in Chenopodium quinoa, necrotic local lesions in Gomphrena globosa, mosaic in S. sessiliflorum, leaf and stem necrosis in tomato (Lycopersicon esculentum) 'Rutgers', mosaic and leaf distortion in Datura stramonium and Physalis floridana, and necrotic local lesions followed by systemic necrosis and plant death in four Nicotiana species. Electron microscopic observations of ultra thin sections from infected cubiu leaves showed the presence of spheroidal, membrane-bound particles typical of tospovirus species. Analysis of the nucleocapsid protein from concentrated virus particles indicated the presence of a 28 kDa protein. RT-PCR was performed after total RNA extraction from infected IPA-6 tomato leaves. A fragment of approximately 0,8 kbp corresponding to the N gene was amplified, cloned and sequenced. The N protein from the cubiu isolate was 95% homologous to the Groundnut ringspot virus (GRSV) protein, and no more than 85% homologous to those from Zucchini lethal chlorosis virus (ZLCV) and Chrysanthemun stem necrosis virus (CSNV), Tomato spotted wilt virus (TSWV), and Tomato chlorotic spot virus (TCSV). This is the first report of the occurrence of GRSV (or any other plant virus) in cubiu.
Resumo:
Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil) and velvetbean (25-100 g/kg) significantly (P < 0.05) reduced mycelial growth of R. solani in laboratory tests. In greenhouse experiments, the percentage of non-diseased plants was higher in treatments with pine bark and velvetbean (50-100 g/kg). In soil treated with kudzu (r²=0.91) or velvetbean (r²=0.94), increasing rates of these amendments tended to increase plant fresh mass. In microplot field conditions, soil amended with velvetbean (r²=0.85) and pine-bark (r²=0.61) significantly reduced disease on soybean. Numbers of Bacillus megaterium (r²=0.87) and Trichoderma hamatum (r²=0.92) and hydrolysis of fluorescein diacetate (r²=0.91) were higher in soil amended with increasing rates of velvetbean, indicating an increase in microbial activity. From this study it is concluded that dried powders of velvetbean and pine bark added to soil can reduce Rhizoctonia-induced disease on soybean.
Outplanting performace of eucalyptus clonal cuttings produced in different containers and substrates
Resumo:
The objective of this work was to evaluate the outplanting growth of Eucalyptus grandis e E. saligna clones, produced by cuttings in tubes (50cm³) and in pressed blocks (40x60x07cm) - 175 cm³/ seedlings, with different substrates (BT - sugarcane bagasse+sugarcane filter cake; AR - carbonized rice hull + eucalyptus bark; TF - peat). The experiment was arranged in a randomized block design, in a 2x7 factorial (2 clones and 7 treatments), with four replicates with 25 plants. Survival was evaluated two months later. Plant growth was monitored through height and ground level diameter at 20, 40, 60, 120 and 180 days after outplanting. To evaluate the effect of the containers on stem and root biomass in both clones, 180 days after outplanting, the cuttings grown in BT substrate with fertilizer were selected. One plant per plot of each clone, grown in tubes and in pressed blocks was selected. The E. grandis and E. saligna cuttings grown in pressed blocks with sugarcane bagasse+sugarcane filter cake presented greater height and diameter after out planting. Both clones presented larger root, bark, log and branch biomass production in plants produced in the block system. Cuttings of E. saligna grown in pressed blocks showed 80% most wood biomass 180 days after outplanting, compared to that grown in tubes. In E. grandis, the differences in diameter and height, in function of the cutting production system, decreased along time, while in E. saligna these differences increased along the evaluation period.
Resumo:
Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1) and plant age. The species were evaluated every 90 days for plant height (PH), crown diameter (CD) and root collar diameter (RCD) (10 cm above the ground), with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH) (1.30 m above the ground). A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.
Resumo:
This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.
Resumo:
The cassava leaf, waste generated in the harvest of the roots, is characterized by high content of protein, vitamins and minerals; however, its use is limited due to the high fiber content and antinutritional substances, which can be removed by obtaining protein concentrates. In this context, the objective of this study was to evaluate protein extraction processes, aiming the use of cassava leaves (Manihot esculenta Crantz) as an alternative protein. Four methods were tested: 1) Coagulation of Proteins by Lowering the Temperature, 2) Extraction by Isoelectric Precipitation, 3) Solubilization of Proteins and 4) Fermentation of Filter Leaf Juice. To obtain the concentrates, the use of fresh or dried leaves and extraction in one or two steps were also evaluated. The solubilization of proteins (method 3) showed a higher extraction yield; however, with concentrate of low quality. The fermentation of the juice (method 4) produced concentrates with higher quality and lower costs and the isoelectric precipitation (method 2) promoted the obtention of concentrates in less time, both with good prospects for use. The use of two extraction steps was not advantageous to the process and there was no difference between the use of fresh or dried leaf, and the use of fresh leaves is presented as a good option for the simplicity of the method.
Resumo:
The capuchin monkey is widespread both north and south of the Legal Amazon and in the Brazilian cerrado. Ten clinically healthy capuchin monkeys were submitted to an anatomical and radiographic study of their thoracic cavities. The radiographic evaluation allowed the description of biometric values associated with the cardiac silhouette and thoracic structures. Application of the VHS (vertebral heart size) method showed positive correlation (P<0.05) with depth of the thoracic cavity, as well as between the body length of vertebrae T3, T4, T5 and T6 and the cardiac length and width. The lung fields showed a diffuse interstitial pattern, more visible in the caudal lung lobes and a bronchial pattern in the middle and cranial lung lobes. The radiographic examination allowed preliminary inferences to be made concerning the syntopy of the thoracic structures and modification of the pulmonary patterns and cardiac anatomy for the capuchin monkey.
Resumo:
Carryove reffects of fomesafen on successional maize were studied in clay soil. Fomesafen was applied as postemergence at Five rate s (0; 0.12 5: 0.25 ; 0.37 5, and 0.5 kg/ha-1) to edible beans. Maize was planted 198 and 65 days after fomesafen application in 1992 and 212 and 65 days after fomesafen application in 1993. Fomesafen residues were detected in soils up to 20cm depth but residue concentration was higher in 0-10 cm soil depth. Fomesafen residues reduced leaf chlrophyll content and root volume of 10 days old maize when planted 65 days after application but were not affected when planted 212 days after application. However, the decreases in leaf chlorophyll and root volume did not affect the maize yield.
Resumo:
Imazapyr has been used to control stump sprouting in stand of Eucalyptus plantations, where herbicide is applied to the tree trunk before cutting. The herbicide is applied exclusively on the stump to be killed, but little is known about the final fate of the molecule. Imazapyr exudation via roots of eucalypt grown in soil as the substrate was evaluated under greenhouse conditions. Different herbicide doses (0.000, 0.375, 0.750, 1.125, 1.500, and 3.000 kg ha-1 a.i.) were applied on the aerial parts of 8-month-old Eucalyptus grandis clonal seedlings, cultivated in pots with 18.0 dm³ of soil. Forty days after this treatment, the eucalypt plants were cut and a lateral opening in the containers was made and the plants inclined 90º, with plants sensitive to herbicide presence (sorghum and cucumber) sown into the openings along the exposed soil surface. After 15-day sowing, toxicity symptoms on the shoots as well as the shoot and root system dry biomass of the bio-indicators were evaluated. The results suggest that eucalypt roots do exude imazapyr, and/or its metabolites, at concentrations high enough to cause toxicity to the bio-indicators. Toxicity effects were observed in all plants sown along the exposed soil profile of the container, with higher intensity at higher doses.
Resumo:
Studies on plant growth are interesting because they provide explanations for the factors that influence yield in various crops. The objective of this work was to evaluate growth and yield in corn cultivar AG1051, when in competition with weeds. Cultivar AG 1051 was submitted to two groups of treatments: weed control, and sampling periods for dry biomass evaluation. The weed control treatments consisted of hoeing (two hoeings performed at 20 and 40 days after sowing) and no hoeing. Sampling periods consisted of collecting the above-ground part and roots of corn every fifteen days, until 105 days after sowing (DAS); the first sampling was performed 30 DAS. A completely randomized block design with ten replicates was used. For the characteristics evaluated in a single season, statistical analyses were carried out as a random block experiment. For the characteristics evaluated in several periods, statistical analyses were carried out as random blocks with split-plots (weed control assigned to plots). Fourteen weed species, unevenly distributed throughout the experimental area, were the most important. The growth observed for the above-ground part and root system of corn was 30% smaller in the non-hoed plots, compared to the hoed plots. Lack of weed control increased dry matter of the above-ground part of the weeds and reduced the number of unhusked and husked marketable green ears by 23% and 49%, respectively. Grain yield reduction caused by lack of weed control reached 38%.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.