953 resultados para latent tuberculosis
Resumo:
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear.
Resumo:
In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials.
Resumo:
The main cause of pulmonary tuberculosis (TB) is infection with Mycobacterium tuberculosis (MTB). We aimed to evaluate the contribution of nontuberculous mycobacteria (NTM) to pulmonary disease in patients from the state of Rondônia using respiratory samples and epidemiological data from TB cases. Mycobacterium isolates were identified using a combination of conventional tests, polymerase chain reaction-based restriction enzyme analysis of hsp65 gene and hsp65 gene sequencing. Among the 1,812 cases suspected of having pulmonary TB, 444 yielded bacterial cultures, including 369 cases positive for MTB and 75 cases positive for NTM. Within the latter group, 14 species were identified as Mycobacterium abscessus, Mycobacterium avium, Mycobacterium fortuitum, Mycobacterium intracellulare, Mycobacterium gilvum, Mycobacterium gordonae, Mycobacterium asiaticum, Mycobacterium tusciae, Mycobacterium porcinum, Mycobacterium novocastrense, Mycobacterium simiae, Mycobacterium szulgai, Mycobacterium phlei and Mycobacterium holsaticum and 13 isolates could not be identified at the species level. The majority of NTM cases were observed in Porto Velho and the relative frequency of NTM compared with MTB was highest in Ji-Paraná. In approximately half of the TB subjects with NTM, a second sample containing NTM was obtained, confirming this as the disease-causing agent. The most frequently observed NTM species were M. abscessus and M. avium and because the former species is resistant to many antibiotics and displays unsatisfactory cure rates, the implementation of rapid identification of mycobacterium species is of considerable importance.
Resumo:
Some sites of extrapulmonary tuberculosis and focal complications of brucellosis are very difficult to differentiate clinically, radiologically, and even histopathologically. Conventional microbiological methods for the diagnosis of extrapulmonary tuberculosis and complicated brucellosis not only lack adequate sensitivity, they are also time consuming, which could lead to an unfavourable prognosis. The aim of this work was to develop a multiplex real-time PCR assay based on SYBR Green I to simultaneously detect Brucella spp and Mycobacterium tuberculosis complex and evaluate the efficacy of the technique with different candidate genes. The IS711, bcsp31 and omp2a genes were used for the identification of Brucella spp and the IS6110, senX3-regX3 and cfp31 genes were targeted for the detection of the M. tuberculosis complex. As a result of the different combinations of primers, nine different reactions were evaluated. A test was defined as positive only when the gene combinations were capable of co-amplifying both pathogens in a single reaction tube and showed distinguishable melting temperatures for each microorganism. According to the melting analysis, only three combinations of amplicons (senX3-regX3+bcsp31, senX3-regX3+IS711 and IS6110+IS711) were visible. Detection limits of senX3-regX3+bcsp31 and senX3-regX3+IS711 were of 2 and 3 genome equivalents for M. tuberculosis complex and Brucella while for IS6110+IS711 they were of 200 and 300 genome equivalents, respectively. The three assays correctly identified all the samples, showing negative results for the control patients. The presence of multicopy elements and GC content were the components most influencing the efficiency of the test; this should be taken into account when designing a multiplex-based SYBR Green I assay. In conclusion, multiplex real time PCR assays based on the targets senX3-regX3+bcsp31 and senX3-regX3+IS711 using SYBR Green I are highly sensitive and reproducible. This may therefore be a practical approach for the rapid differential diagnosis between extrapulmonary tuberculosis and complicated brucellosis.
Resumo:
Tuberculosis (TB) is an infectocontagious respiratory disease caused by members of the Mycobacterium tuberculosis complex. A 7 base pair (bp) deletion in the locus polyketide synthase (pks)15/1 is described as polymorphic among members of the M. tuberculosis complex, enabling the identification of Euro-American, Indo-Oceanic and Asian lineages. The aim of this study was to characterise this locus in TB isolates from Mexico. One hundred twenty clinical isolates were recovered from the states of Veracruz and Estado de Mexico. We determined the nucleotide sequence of a ± 400 bp fragment of the locus pks15/1, while genotypic characterisation was performed by spoligotyping. One hundred and fifty isolates contained the 7 bp deletion, while five had the wild type locus. Lineages X (22%), LAM (18%) and T (17%) were the most frequent; only three (2%) of the isolates were identified as Beijing and two (1%) EAI-Manila. The wild type pks15/1 locus was observed in all Asian lineage isolates tested. Our results confirm the utility of locus pks15/1 as a molecular marker for identifying Asian lineages of the M. tuberculosis complex. This marker could be of great value in the epidemiological surveillance of TB, especially in countries like Mexico, where the prevalence of such lineages is unknown.
Resumo:
Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.
Resumo:
Approximately 10% of the Brazilian indigenous population lives in the state of Mato Grosso do Sul (MS), where a large number of new cases of tuberculosis (TB) are reported. This study was conducted to assess TB occurrence, transmission and the utility of TB diagnosis based on the Ogawa-Kudoh (O-K) culture method in this remote population. The incidence of TB was estimated by a retrospective review of the surveillance data maintained by the Notifiable Diseases Surveillance System for the study region. The TB transmission pattern among indigenous people was assessed by genotyping Mycobacterium tuberculosis isolates using the IS 6110restriction fragment length polymorphism (RFLP) technique. Of the 3,093 cases identified from 1999-2001, 610 (~20%) were indigenous patients (average incidence: 377/100,000/year). The use of the O-K culture method increased the number of diagnosed cases by 34.1%. Of the genotyped isolates from 52 indigenous patients, 33 (63.5%) belonged to cluster RFLP patterns, indicating recently transmitted TB. These results demonstrate high, on-going TB transmission rates among the indigenous people of MS and indicate that new efforts are needed to disrupt these current transmissions.
Resumo:
Human T-cell lymphotropic virus (HTLV) may impact the clinical course of tuberculosis (TB). Both infections are highly endemic in Brazil. The aim of this study was to assess the prevalence of HTLV-1/2 in TB patients in Central-West Brazil and to perform a genetic characterisation of the respective isolates. Of the 402 patients, six (1.49%) were positive for anti-HTLV and five (1.24%; 95% confidence interval: 0.46-3.05) were infected with HTLV-1/2. Genetic characterisation demonstrated that the four HTLV-1 isolates belonged to the Transcontinental subgroup A of the Cosmopolitan subtype a and that the HTLV-2 isolate belonged to subtype a (HTLV-2a/c). The prevalence of HTLV infection observed in this study is higher than that observed in local blood donors and the HTLV-1 and 2 subtypes identified are consistent with those circulating in Brazil.
Resumo:
Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.
Resumo:
The aim of this study was to investigate the performance of a new and accurate method for the detection of isoniazid (INH) and rifampicin (RIF) resistance among Mycobacterium tuberculosis isolates using a crystal violet decolourisation assay (CVDA). Fifty-five M. tuberculosis isolates obtained from culture stocks stored at -80ºC were tested. After bacterial inoculation, the samples were incubated at 37ºC for seven days and 100 µL of CV (25 mg/L stock solution) was then added to the control and sample tubes. The tubes were incubated for an additional 24-48 h. CV (blue/purple) was decolourised in the presence of bacterial growth; thus, if CV lost its colour in a sample containing a drug, the tested isolate was reported as resistant. The sensitivity, specificity, positive predictive value, negative predictive value and agreement for INH were 92.5%, 96.4%, 96.1%, 93.1% and 94.5%, respectively, and 88.8%, 100%, 100%, 94.8% and 96.3%, respectively, for RIF. The results were obtained within eight-nine days. This study shows that CVDA is an effective method to detect M. tuberculosis resistance to INH and RIF in developing countries. This method is rapid, simple and inexpensive. Nonetheless, further studies are necessary before routine laboratory implementation.
Resumo:
We evaluated the in vitro anti-Mycobacterium tuberculosis activity and the cytotoxicity of dichloromethane extract and pure compounds from the leaves of Calophyllum brasiliense. Purification of the dichloromethane extract yielded the pure compounds (-) mammea A/BB (1), (-) mammea B/BB (2) and amentoflavone (3). The compound structures were elucidated on the basis of spectroscopic and spectrometric data. The contents of bioactive compounds in the extracts were quantified using high performance liquid chromatography coupled to an ultraviolet detector. The anti-M. tuberculosis activity of the extracts and the pure compounds was evaluated using a resazurin microtitre assay plate. The cytotoxicity assay was performed in J774G.8 macrophages using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colourimetric method. The quantification of the dichloromethane extract showed (1) and (2) at concentrations of 31.86 ± 2.6 and 8.24 ± 1.1 µg/mg of extract, respectively. The dichloromethane and aqueous extracts showed anti-M. tuberculosis H37Rv activity of 62.5 and 125 µg/mL, respectively. Coumarins (1) and (2) showed minimal inhibitory concentration ranges of 31.2 and 62.5 µg/mL against M. tuberculosis H37Rv and clinical isolates. Compound (3) showed no activity against M. tuberculosis H37Rv. The selectivity index ranged from 0.59-1.06. We report the activity of the extracts and coumarins from the leaves of C. brasiliense against M. tuberculosis.
Resumo:
The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.
Resumo:
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
Resumo:
The present study analysed the concordance among four different molecular diagnostic methods for tuberculosis (TB) in pulmonary and blood samples from immunocompromised patients. A total of 165 blood and 194 sputum samples were collected from 181 human immunodeficiency virus (HIV)-infected patients with upper respiratory complaints, regardless of suspicious for TB. The samples were submitted for smear microscopy, culture and molecular tests: a laboratory-developed conventional polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) and the Gen-Probe and Detect-TB Ampligenix kits. The samples were handled blindly by all the technicians involved, from sample processing to results analysis. For sputum, the sensitivity and specificity were 100% and 96.7% for qPCR, 81.8% and 94.5% for Gen-Probe and 100% and 66.3% for Detect-TB, respectively. qPCR presented the best concordance with sputum culture [kappa (k) = 0.864)], followed by Gen-Probe (k = 0.682). For blood samples, qPCR showed 100% sensitivity and 92.3% specificity, with a substantial correlation with sputum culture (k = 0.754) and with the qPCR results obtained from sputum of the corresponding patient (k = 0.630). Conventional PCR demonstrated the worst results for sputa and blood, with a sensitivity of 100% vs. 88.9% and a specificity of 46.3% vs. 32%, respectively. Commercial or laboratory-developed molecular assays can overcome the difficulties in the diagnosis of TB in paucibacillary patients using conventional methods available in most laboratories.
Resumo:
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman’s rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB.